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Abstract. We present an iterative framework for robustly solving large in-
verse problems arising in imaging using only single-precision (or other reduced-

precision) arithmetic, which allows the use of high-density processors (e.g.

Cell BE and Graphics Processing Units). Robustness here means linear-
convergence even for large problems (billions of variables), with high levels of

noise (signal to noise levels less than unity). This framework handles problems

formulated as quadratic and general non-linear minimization problems. Sparse
and dense problems can be treated, as long as there are efficient parallelizable

matrix-vector products for the transformations involved. Outer iterations cor-

respond to approximate solutions of a quadratic minimization problem, using
a single Newton step. Inner iterations correspond to the estimation of the step

via truncated Neumann series or minimax polynomial approximations built
from operator splittings. Given the simple convergence analysis, this approach

can also be used in embedded environments with fixed computation budgets,

or certification requirements, like real-time medical imaging. We describe a
benchmark problem from MRI, and a series of penalty functions suited to this

framework. An important family of such penalties is motivated by both Bi-

lateral Filtering and Total Variation, and we show how they can be optimized
using linear programming. We also discuss penalties designed to segment im-

ages, and use different types of a priori knowledge, and show numerically that

the different penalties are effective when used in combination.

1. Introduction

In a previous work, [ACK06], we optimized Magnetic Resonance Imaging (MRI)
data collection to enable real-time volumetric imaging. The idea was to trade faster
collection time for lower data quality. By incorporating a priori information about
images via regularization, we hope to maintain image quality in spite of the lower
data quality. In this paper, we propose a method of solving such inverse imaging
problems which are characterized by two challenges: size (up to billions of model
variables) and tight budgets (for solution time, cost, and power consumption).

Recent progress on regularization methods, notably Total Variation [ROF92],
demonstrate remarkable image quality improvements by incorporating regulariza-
tion and iterative strategies into a growing list of inverse problem models. Bilateral
filtering [TM98], on the other hand, provides a remarkable level of noise reduction
in a single step, which makes it much more efficient for this simplest inverse imaging
problem.
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These algorithm developments coincide with a period of rapid change in hard-
ware architecture. For example, the recently-released first-generation Cell BE de-
livers 25GFlops (double precision) or 200GFlops (single precision) on a single chip.
Peak performance only occurs when single-instruction multiple-data (SIMD), single
precision, constrained program and working data sizes, and multiple cores can all
be used efficiently. This demands a high level and particular structure of paral-
lel decomposition. For the targetted inverse problems, the increased performance
outweighs the algorithm constraints.

Our method arose in answer to the questions: Can the efficiency of bilateral
filtering be brought to inverse imaging problems? Can we take full advantage of
these new processors (SIMD, single-precision, small and/or streaming working sets)
in a solver which scales to billion-variable problems, retaining numerical stability.

In this work, we define and demonstrate an iterative solution method for a class
of inverse problems, including problems referred to as image estimation or image
reconstruction. The method

(1) is safe in single precision;
(2) can take full advantage of newer hardware (effectively using SIMD and

small working-memory footprints);
(3) comes with residual error estimates as a function of model component eigen-

values and algorithm parameters.
Numerical results (using single precision) reflect the linear convergence predicted
by the residual estimates.

Recently, Dongarra et al. [KD06] have shown that on architectures with better
single-precision performance, basic linear algebra can be significantly accelerated
by using iterative refinement and mixed single/double precision. Our approach is
potentially more general in that it uses only single precision, but more restricted
in depending on the specific structure of inverse imaging problems. It would be
interesting to compare the present approach with one based on iterative refinement
in the future.

This framework can be applied to any linear inverse problem
(1) in which the model variables are regular samplings of a vector-space-valued

function (e.g., a multi-spectral image), and
(2) for which there is an efficiently computable (but not necessarily sparse)

forward problem.
It applies to some nonlinear problems, and we demonstrate this with a nonlinear
penalty, but provide no proofs of convergence in the general nonlinear case. In
our particular case, the nonlinear penalty is used to enforce pixel-value segmenta-
tion, which by nature is multi-modal, so convergence to the local minimum is not
guaranteed. We use a numerical test problem from Magnetic Resonance Imaging
(MRI), SENSitivity Encoding (SENSE), in a variant which does admit a direct
inversion. The direct inversion gives us a baseline against which we can evaluate
noise mitigation.

We focus our discussion of efficient implementation on the Cell BE processor,
[KDH+05]. This processor lies between mainstream microprocessors and Graphics
Processors both in peak performance, and in the restrictiveness of the programming
model, and has announced support for distributed computation. The numerical
tests described in this paper were carried out using single precision on a PowerPC
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970. The core operations have been implemented in Cell simulators for the purpose
of estimating peak efficiency, and we are working on the distribution framework
which will permit us to solve large problems.

2. Related Work

Our solution method is an iterative method based on an operator splitting and
associated incomplete LU factorization.

The specific splitting we consider was considered by van der Vorst in [vdV82].
He did not form the same incomplete Cholesky decompositions. His choice is based
on efficiently-implementable operations on contemporary vector computers. Today,
with pipelined SIMD processors, we can perform Cholesky decomposition of sparse
block banded matrices with banded sparse blocks at peak processor speeds. In
fact, data transmission between computational units rivals the execution time for
Cholesky decompositions and back-solves.

We also use Neumann series expansions and minimax polynomials, which were
first proposed in [DGR79] and [JMP83]. We are not using them to precondition
a Krylov space method, as originally proposed, but the relationship between pre-
conditionners and stationary iteration is (and was) well-understood. Improved
convergence in an iterative method like ours correlates with improved convergence
of a Krylov space method using our iteration as a preconditioner. In current prac-
tice, Krylov space methods far outstrip other iterative methods. The advantage
of a Krylov space method is reduced when the quadratic function we are minimiz-
ing changes from iteration to iteration. In addition, Krylov space methods involve
chains of residual calculations in which round-off error accumulated. Given the
combination of large target problem sizes, lack of sparsity in the forward problem,
and reduced precision (and lack of desired rounding modes and denormals), large
relative errors can be expected in intermediate calculations common to both meth-
ods, so in this paper, we consider a less sensitive, and more flexible non-stationary
iteration.

Although it is not always competitive, Neumann series have been applied to
inverse problems. In [WNC01], Neumann series are used to refine the solution to
a related problem, because the related problem is easier to solve than the original
one.

The convergence of our method depends on the structure of the objective func-
tions, and their Hessians. The basic objective function is dictated by the mathe-
matical model we are trying to solve. Often, minimizing this objective does not
produce acceptable results, and regularization is required to encourage solutions to
conform to a priori knowledge we have about actual solutions. The regularization
can enter explicitly in the form of penalty functions, with Total Variation (de-
scription below) being of greatest recent interest. Or the regularization can enter
implicitly as a modification of the method of iteration, including methods based on
diffusion equations first introduced in [PM90]. Convolution filters can be consid-
ered an extreme iterative method, and part of our motivation was the exceptional
performance of Bilateral Filters, which are described in detail below.

Another way of obtaining similar models is to explicitly model the pixel values
as random fields, using Markov processes to capture the dependence of pixels on
their neighbors. See [NMDI94], [ZBS01] for examples close to our problem domain.
In this context, it is natural to introduce distributions from Robust Statistics.
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2.1. Alternative Optimization Methods. All methods can be classified by their
use of model derivatives (uses no derivatives and usually no objective, formulates
objective and uses its gradient, formulates objective and also uses its Hessian). All
classes contain iterative methods which have been used sucessfully on the types of
inverse problems of interest.

Projection onto Convex Sets (POCS), uses no derivatives, is stable and simple
to implement, and was used early in MRI, see [MSP86], and is still applied to solve
problems very similar to our own test problem, see [SKPJ04], [AM06].

Time-marching methods based on the diffusion equations can be interpreted as
gradient-based methods, but in general, these methods are rarely applied to the
types of inverse problems of interest to us.

Because of problem size and structure, direct methods to calculate Newton steps
will not work. So methods using the second derivative are based on iterative ap-
proximation of the step, commonly using the Conjugate Gradient (CG) method.
This is the approach taken to solve planar problems of the type we consider, but
without regularization, see [PWBB01].

This is not a comprehensive list of relevant optimization methods. We have not
considered constrained optimization, adapted function spaces (e.g. basis pursuit in
redundant wavelet bases, or spline bases [LP06]), filter search and L-curve analysis,
all of which could be used to extend or improve the method we describe.

2.2. Total Variation. Total variation as a regularizer for inverse problems (image
recovery) was introduced in [ROF92]. The basic idea is to use

(1)
∫

Ω

‖∇f‖ ,

the L1 norm of the gradient of the model function, as a regularizer. Using the L1

norm is motivated both by heuristics (penalizing oscillations versus steep slopes)
and robust statistics, see [Hub81] and [HHK+03], which seek to reduce the large
effect outliers can have on estimates based on limited samples (image pixels always
have limited numbers of neighbors). Total Variation was quickly shown to produce
visually and numerically superior solutions to standard problems in image pro-
cessing, see [Cha04], and image reconstruction, see [CCT04], including constrained
optimization [BCRS03].

The main difficulty with TV was the lack of smoothness in the penalty func-
tion, which can be dealt with in various ways, notably by introducing an auxiliary
optimization problem and using a custom primal-dual [CGM99] or second-order
cone [GY05] approach. These latter approaches share the robustness and efficiency
of interior point methods, but are still computationally more expensive than the
proposed method.

2.3. Bilateral Filtering. Although anisotropic diffusion (AD) was quite success-
ful, it is inherently expensive (depending as it does on gradient descent). Bilateral
filtering is a one-step noise-reduction method which achieves similar results. For an
introduction which makes explicit the connection with AD, see [Bar02]. The idea
is to combine spatial convolution filtering, with range filtering.
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Let Ω ⊂ ZN be a multi-dimensional lattice of points, V a real vector space and
f : Ω → V a (noisy) image. Convolution with a kernel c : ZN → R,

(2) f̂(x) =
∑

y∈R\{x}

c(y − x)f(y),

is the simplest method of filtering noise. It works when the noise and true image
have different spectra (usually the noise is white, with uniform high- and low-
frequency components, but the image has very small high-frequency components).

Bilateral filtering introduces a range kernel function s : V → R,

(3) f̂(x) =

∑
y∈R\{x} c(y − x)s(f(y)− f(x))f(y)∑

y∈R\{x} c(y − x)s(f(y)− f(x))
,

which modulates the weighting of neighboring pixel values. In the original and later
application papers, this is seen to reduce edge blurring in images with sharp edges,
because it reduces the influence of neighboring pixels on each other when they have
very different values. Both c and s are usually taken to be Gaussian kernels, with
the c being truncated at some finite width to reduce computation, and s chosen to
match the expected noise statistics in f .

Although Bilateral Filtering works well as a single-step filtering method, the
concept can be used in an iterative derivative-free method, for example in AD
[Bar05]. The cycle of ideas is closed in the analysis, [BSMH97], of the link between
robust statistics and AD.

2.4. Exploiting Commodity/Lower-Precision Hardware in Scientific Com-
putation. In another direction, a community of researchers is exploring the limits
of computation possible on graphics processors by translating scientific algorithms
to the limited precision and restricted computational model of current graphics
processors. This work offers an alternative to our proposed method and significant
progress has been made, including recent work on optimization implementing inte-
rior point linear programming using OpenGL [JO06]. For algorithms which do not
perform adequately in single precision, it is possible to use single-precision calcula-
tions and iterative refinement to produce higher-precision results, as was done for
very high-precision linear algebra in [GZ03] and for accelerating Cell computations
in [KD06].

Note: For numerical analysts who may not be familiar with the level and kind
of parallelism available in current commodity architectures, we examine the case
of the first-generation Cell [KDH+05]. This processor contains 8 general-purpose
processor cores (Synergistic Processor Units, SPUs), each capable of dispatching
a single SIMD floating-point operation per cycle. Each SIMD operation operates
on 128 bit operands, which can be operated on as a short vector of four single-
precision floating-point numbers. Although it is possible to reorder the constituents
of operands and synthesize conditional execution, peak floating-point performance
is only achieved when the four floating-point elements in each operand are operated
on in the same manner. For example, adding two vectors can easily be arranged
to function this way, while Cholesky decomposition of a single tridiagonal block
will operate at near one quarter the peak rate. This can be remedied if four blocks
of the same size are processed in parallel, with the data stored in memory in an
interleaved fashion. Again, using the Cholesky decomposition example, data de-
pendencies between instructions mean that four decompositions executed in parallel
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Figure 1. Real (left) and imaginary (right) parts of the ideal den-
sity. The same vertical and gray scales are used in all comparable
plots.

will suffer from pipeline stalls equal to the six cycles of latency of a floating-point
operation. To achieve peak performance, 6 × 4 decompositions must be executed
in parallel, using software-pipelined loops. To use all eight SPUs, we need 8 × 6
decompositions to execute in parallel. Since the SPUs can only efficiently address
256MB of local storage, some method of buffering data in and out of the local stor-
age is required. Double buffering entire blocks is the simplest scheme, requiring an
additional factor of two. In total, 384 decompositions must be in-flight in parallel
to achieve peak performance. The exact amount of parallelism required to achieve
peak performance depends on both the high-level and low-level data dependencies.
For example, dense Cholesky decompositions can be parallelized internally, using
SIMD features at near peak performance, and long vectors may be broken into
blocks and pipelined at the high level. But hundred-way parallelism will still be
required for a single Cell, and thousand-way for a small cluster.

3. Example Problem

We will use a computationally simple inverse problem for the purposes of expo-
sition and numerical evaluation: MR SENSE (Sensitivity Encoding) with regular
two times undersampling of signals in the frequency domain. In this problem, we
want to determine a complex tissue density function

(4) f : Ω → C

from measurements

(5) µ1, µ2, µ3, µ4 : Ω/2 → C,

in which we take Ω = {0, 1, . . . , 255} × {0, 1, . . . , 255} and Ω/2 = {0, 1, . . . , 127} ×
{0, 1, . . . , 255}. The real and imaginary parts of our numerical test object f are
given in Fig. 1. The measurements are modeled by

(6) µm;i,j = Sm;i,jfi,j + Sm;i+128,jfi,j + εm;i,j ,

where the εm;i,j are identically normally distributed, zero mean, independent mea-
surement errors. Physically, the measurements are reconstructed MR images which
are undersampled in one direction so that the reconstructed images alias, with the
top/bottom of the image also appearing in the middle. MR measurements are
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Figure 2. Solution of the direct problem. The fixed gray and
vertical scale reduces the visibility of the noise.

collected using antennae which modulate the tissue density by their spatial sensi-
tivity, Sm : Ω → C. SENSE works well when the antennae are designed to produce
linearly-independent sensitivities.

This is a particular example of SENSE, in which a regular undersampling pattern
in frequency space produces (after reordering) a block diagonal forward problem
with 4 × 8 (real) dense blocks. We take advantage of this structure to solve the
inverse problem directly as a baseline solution, see Fig. 2.

The usual measure for noise in MRI (Signal to Noise Ratio, SNR) is calculated
as the ratio of the largest expected pixel value to the standard deviation of the
measured error. In our case, the true image has pixel values 1, i or 0, so the SNR
is the inverse of the standard deviation of the error, which we have chosen to be 2,
when measured over the pixels with true value of 1, giving an SNR of 1/2. (More
noise than signal.)

The conditioning of the forward problem depends on the sensitivities, and is
referred to as the G-factor in the MR literature. For typical medical imaging, all
of the antennae are constrained to lie outside the patient, and the sensitivities will
all be weak and flat in the middle of the patient. These pixels will be associated
with the blocks with the highest condition numbers.

This example problem is apt because (i) in many imaging problems, increased
signal quality comes with increased collection time (and cost); imaging is never
fast enough, so producing images from noisier data is welcome; and (ii) irregular
sampling patterns (which arise naturally in many efficient imaging situations, e.g.
[PWBB01, ACK06]) lead to problems with no direct inverses.

Using a regularly-sampled representative for this class of problem simplifies the
exposition of the problem and implementation of the algorithm. It also makes avail-
able a direct solution (without regularization) to illustrate the relative magnitude
of the signal and noise, which would be harder to gauge in the general case.

4. Algorithm

The principle is to formulate one or a series of objective functions φi, including
a fit-to-data term and a penalty term(s), and to apply a polynomial approximation
to a Newton step, solving

(7) (H(φi) + αI) ∆xi+1 = −∇φi,
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where αI is a positive multiple of the identity. The polynomial is an approximation
of 1/(1 + x) on an interval containing the spectrum of BA−1, where

(8) H(φi) + αI = A+B,

is a decomposition into A, block diagonal with banded blocks, and B general. The
decomposition is chosen to minimize the spectral radius of B, e.g. by making B
zero on the nonzero bands of A. The blocks correspond to rows or columns in the
image, depending on the ordering (row- or column-major order). We will assume
row-major organization, unless another organization is specifically mentioned. We
make A block diagonal with banded blocks because in the Hessian, this corresponds
to objective/penalty functions which depend on the relationships between close
neighbors in the row direction. An objective which depends on close neighbors in
all directions will have a block banded Hessian with banded blocks, in which most
blocks are zero and nonzero blocks are only nonzero on their central sub/super
diagonals.

We choose this sparse structure for A because each of the blocks (which cor-
respond to rows) can be factored in parallel. The Hessian, and hence B, may be
dense, as long as matrix-vector-products can be efficiently computed. All of the
Hessians for penalty functions introduced in this paper can be effectively paral-
lelized. The problem of fast computation of the fit-to-data term (gradient and
Hessian) is not unique to this method, and for most important inverse problems
fast implementations already exist.

In an N2 image, if A has m � N nonzero bands, the Cholesky decomposition
can be done in parallel for each image row/A block in O(mN ⊗N) operations using
O(mN) working space, to form

(9) A = LLT ,

where we use the notation O(x⊗ y) to mean O(x) operations per parallel compu-
tation, with y such computations for the whole image. In the case of an N3 image,
O(mN ⊗N2) operations would be required.

The same block diagonal structure applies to L. Formally,

(A+B)−1 =(LLT +B)−1

=LT−1(I + L−1BLT−1)−1L−1

(replace with Taylor series)

=(LT−1L−1)− (LT−1L−1BLT−1L−1)

+ (LT−1L−1BLT−1L−1BLT−1L−1)− ...

A truncated Taylor series provides a fast method of finding approximate solutions
to (A+B)−1(∆x) = −∇φi, using the following steps:

(1) calculate L−1(−∇φi) by back-solving in O(nN) operations
(2) calculate LT−1

L−1(−∇φi) by back-solving in O(nN) more operations
(3) save result
(4) calculate BLT−1

L−1(−∇φi) using the fast computation for B
(5) calculate L−1BLT−1

L−1(−∇φi) by back-solving inO(nN) more operations
(6) calculate LT−1

L−1BLT−1
L−1(−∇φi) by back-solving in O(nN) more op-

erations
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(7) subtract from result
... continue to the order of truncation.

This process converges if the spectrum of L−1BLT−1 is in an interval [−b, b]
with b < 1. If a bounding interval [−b, b′] is known, then for any order, we can find
a minimax polynomial p(x) such that

(10) max
x∈[−b,b′]

‖1/(1 + x)− p(x)‖ = ε

is small. It follows that a linear combination,

(11) LT−1
p(L−1BLT−1

)L−1(−∇φi)

using the coefficients of p, of the terms calculated in the procedure above, provides a
better approximation of ∆x than the truncated Taylor series of the same order. (See
[JMP83] for an explanation and application to preconditioned conjugate gradient.)

Using the minimax polynomial requires little extra machine computation, es-
pecially on machines with fused multiply-add instructions. Note that even if the
Taylor series diverges, we can still find a minimax polynomial as long as the spec-
trum is bounded, although we wouldn’t expect a good rate of convergence to result.

The optimization algorithm contains the above procedure as an inner iteration.
The full procedure is

(1) compute gradient at current iterate (xi);
(2) compute Hessian and LTL (if the objective is convex quadratic);
(3) solve for the approximate Newton step using the procedure above;
(4) repeat until the step size or decrease in objective value fail to cross a thresh-

old.

We allow for non-stationary objective functions to accommodate non-convex objec-
tive functions which need to be solved in stages to prevent convergence to undesir-
able minima.

Proposition 1. The method above converges linearly for purely quadratic objec-
tives.

Proof. To ensure stability of the factorization step or to improve convergence, we
added a multiple of the identity to the Hessian. Let α be this multiple and let H
be the Hessian. The quadratic approximation to the objective can be written

(12) φapprox =
1
2
(x− x0)TH(x− x0) + φ0,

for some constant φ0 and minimum x0. The gradient is H(x− x0).
The difference between the next iterate and the minimum point is

(13)

‖x+ ∆x− x0‖ =
∥∥x+ p(A−1B)A−1(−H(x− x0))− x0

∥∥
≤

∥∥p(A−1B)A−1(−H(x− x0))− (H+ αI)−1(−H(x− x0))
∥∥

+
∥∥(H+ αI)−1(−H(x− x0))− (x− x0)

∥∥
≤

(
ε ‖H‖+

∥∥(H+ αI)−1
∥∥α)

‖x− x0‖ .

So if the spectrum of the Hessian is bounded away from zero, we can find a poly-
nomial approximation of sufficient degree to make ε small enough to ensure that
approximate Newton step is a contraction mapping, and the iteration converges. �
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The rate of convergence depends on the conditioning of the Hessian and the
order of the polynomial approximation.

We have shown that this framework converges in infinite precsion. It works even
with low-precision arithmetic well past a level of convergence meaningful in imaging
problems because errors do not accumulate from outer iteration to outer iteration,
and errors in the inner iteration amount to tens of ulps which is below the error of
the approximation.

For a polynomial p(x) =
∑

i pix
i, rounding errors during the inner iteration will

be on the order of m ulps plus
∑

i |pi|/pmin ulps multiplied errors in multiplication
by B, where pmin is the minimum magnitude coefficient of the polynomial. In
reasonable situations this result in a ratio under two, and in our test-case we have
always been able to keep it under one. We use the fact, see [GVL96], that Cholesky
decomposition of the diagonally-dominated blocks of A introduces at most a few
ulps of error.

The dense operators B occurring in these types of problems (i.e. Fourier and
Radon transforms) are stable in practice. Conventional image reconstructions
would not work if this were not the case.

Note: In many embedded and large-data-throughput applications, numerical
convergence criteria are not used, because the computation budget is fixed. In these
cases, asymptotic convergence is not important in itself, but the implied numerical
stability is important, since many such computations run unsupervised.

5. Penalties

Convergence of our method depends on the structure of the objective function.
Because inverse problems come with a variety of structures, we would like to be
able to ensure rapid convergence with the penalty terms. Two properties can ensure
this: dominance of the block diagonal component of the Hessian and a good gradient
direction.

5.1. Bilateral Regularization. Modeling our first family of penalty functions on
bilateral filtering, we replace (3) with a penalty

(14) φbi(f) =
∑
y 6=x

c(y − x)s(f(y)− f(x)),

where c and s can be any kernel functions, including ones used in bilateral filtering.
The choice of c and s is guided by

(1) previous use in statistics or filtering,
(2) descent direction, −∇φbi,
(3) sparsity and conditioning of the Hessian.

We want the negative gradient to point in the direction of a more likely image
than the current estimate. For problems where pixel values represent component
properties, e.g. water content or radio opacity, images are expected to be piecewise
constant to a first approximation, with most of the signal in the low-frequency
components, while the noise is distributed evenly across frequencies. This leads to
the design goal

−∇φbi(fhigh) = −fhigh, while

−∇φbi(fzero) = 0.
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For one of the penalties will define, we can formulate this design problem using
constrained linear optimization involving the coefficients of c. The optimization
model is a multi-dimensional analogue of FIR filter design. Since the penalties
form a family, it makes sense to use such an optimal c for the whole family.

For general c and s, the gradient and Hessian are

∂

∂fi(x)
φbi =

∑
{y | y 6=x}

∂s(f(x)− f(y))
∂fi(x)

c(x− y),(15)

and

(16) Hfi(x),fj(y)φbi = =
∑

{y | y 6=x}

∂2s(f(x)− f(y))
∂fj(y) ∂fi(x)

c(x− y).

The sparsity of the Hessian depends on the support of c and the derivatives of s.
The derivatives of s are important when f is vector-valued. If s depends func-
tionally on ‖f‖ alone, then its Hessian is a multiple of the identity, and the full
Hessian decomposes into identical, block banded with banded block blocks. In our
implementation, we use this fact to reduce storage for the Hessian and the number
of Cholesky decompositions.

Consider s(t) = ‖t‖2 (L2 norm). To simplify the analysis, we assume
∑

y 6=0 c(y) =
1, and c(y) ≥ 0. In this case we define

(17) φbi2 =
∑
y 6=x

c(y − x) ‖f(y)− f(x)‖2 ,

and compute

∂

∂fi(x)
φbi2 = 2

∑
y 6=x

(fi(x)− fi(y))c(x− y) = 2

fi(x)−
∑
y 6=x

fi(y)c(y − x)

 ,

(18)

and

(19)

Hfi(x),fj(y)φbi2 = 0, ∀(i 6= j or x 6= y)

Hfi(x),fi(x)φbi2 = 2
∑
y 6=0

c(y) = 2,

Hfi(x),fi(y)φbi2 = −2c(x− y).

We observe that ∇φbi2(f) is the convolution of f with the kernel formed by 1 at
zero and − c(x) for other values of x. This is why the design can be formulated
as linear programming. In Fig. 3 we show the optimal two-dimensional discrete
function c with support in a disc of radius

√
18 which we use in the numerical

examples in this paper.
Other functions s to consider are motivated by use in statistics and filtering:

φbiTV =
∑
y 6=x

c(y − x) ‖f(y)− f(x)‖ ,(20)
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Figure 3. Optimal
√

18 spatial kernel and its transfer function,
with contours at .05 intervals from − 1.05 to − .05, with a double
contour at − 1.

‖x‖ c(x)
1 0.04071725
2 0.03499660
4 0.02368359
5 0.02522255
8 0.02024067
9 0.01407202
10 0.01345276
13 0.00850939
16 0.00812839
17 0.00491274
18 0.00396661

Table 1. Optimized definition of c used in numerical examples.

is equal to the Total Variation, when c(x−y) is zero except for immediate neighbors,
and hence has all the problems associated with the discontinuity at the origin and
zero Hessian;

φbiHuber =
∑
y 6=x

c(y − x)sHuber(f(y)− f(x)),(21)

in which sHuber is the Huber function used in robust statistics. It is the C1 function
which equals the absolute value outside a neighborhood of zero and a parabola
inside. This penalty has a continuous gradient but discontinuous Hessian.

φbiNormal = −
∑
y 6=x

c(y − x)e‖f(y)−f(x)‖2
.(22)
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For a polynomial p, rounding errors during the inner iteration will be on the
order of m ulps plus pmax/pmin ulps plus errors in multiplication by B, where pmax

and pmin are the maximum and minimum coefficients of the polynomial, which
in reasonable situations result in a ratio under 2. We use the fact, see [GVL96],
that Cholesky decomposition of the diagonally-dominated blocks of A introduces
at most a few ulps of error.

The dense operators B occurring in these types of problems (i.e. Fourier and
Radon transforms) are stable in practice. Conventional image reconstructions
would not work if this were not the case.

Note: In many embedded and large-data-throughput applications, numerical
convergence criteria are not used, because the computation budget is fixed. In these
cases, asymptotic convergence is not important in itself, but the implied numerical
stability is important, since many such computations run unsupervised.

5. Penalties

Convergence of our method depends on the structure of the objective function.
Because inverse problems come with a variety of structures, we would like to be able
to insure rapid convergence with the penalty terms. Two properties can insure this:
dominance of the block diagonal component of the Hessian, and a good gradient
direction.

5.1. Bilateral Regularization. Modeling our first penalty on bilateral filtering,
we replace (4) with a penalty

(15) φbi(f) =
∑

y !=x

c(y − x)s(f(y)− f(x)),

where c and s can be any kernel functions used in bilateral filtering. We want
−∇φbi to point in the direction of a more-likely image than the current estimate.
For problems where pixel values represent component properties, e.g. water content
or radio opacity, images are expected to be piecewise constant to a first approxi-
mation, with most of the signal in the low-frequency components. Noise, however,
is random, distributed evenly across frequencies. We can design c so that

−∇φbi(fhigh) = −fhigh, while
−∇φbi(fzero) = 0,

using constrained linear optimization, in a multi-dimensional analogue of FIR filter
design.

In general

∂

∂fi(x)
φbi =

∑

{y | y !=x}

∂s(f(x)− f(y))
∂fi(x)

c(x− y),(16)

and

(17) Hfi(x),fj(y)φbi = =
∑

{y | y !=x}

∂2s(f(x)− f(y))
∂fj(y) ∂fi(x)

c(x− y).

The sparsity of the Hessian depends on the support of c and the derivatives of
s. The simplest s to analyze is s(t) = ‖t‖2. To simplify the analysis, we assume
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∑
y !=0 c(y) = 1, and c(y) ≥ 0. In this case we define

(18) φbi2 =
∑

y !=x

c(y − x) ‖f(y)− f(x)‖2 ,

and compute

∂

∂fi(x)
φbi2 = 2

∑

y !=x

(fi(x)− fi(y))c(x− y) = 2



fi(x)−
∑

x!=y

fi(x)c(x)



 ,(19)

and

(20)

Hfi(x),fj(y)φbi2 = 0, ∀(i %= j or x %= y)

Hfi(x),fi(x)φbi2 = 2
∑

y !=0

c(y) = 2,

Hfi(x),fi(y)φbi2 = −2c(x− y).

In our example, the image is complex valued, so there are two components,
corresponding to the real and imaginary part, but the analysis works for any real-
vector-valued image. We observe that ∇φbi2(f) is the convolution of f with the
kernel formed by 1 at zero and − c(x) for other values of x.

This is the only case for which we can analyze/optimize the performance of c,
but we can use such cs for other functions s. Other functions s to consider are

φbiTv =
∑

y !=x

εc(y − x)√∥∥∥f̃(y)− f̃(x)
∥∥∥

2
+ ε

‖f(y)− f(x)‖2 ,(21)

which is differs from φbi2 in that the terms are scaled by the pixel values in the
previous iteration (f̃);

φbiTV =
∑

y !=x

c(y − x) ‖f(y)− f(x)‖ ,(22)

which is differs from φbi2 in that the terms are scaled by the pixel values in the
previous iteration (f̃);

φbiHuber =
∑

y !=x

c(y − x)sHuberf(y)− f(x),(23)

in which sHuber is the Huber function used in robust statistics which is a C1 function
which equals the absolute value outside a neighborhood of 0 and a parabola inside;
and

φbiNormal = −
∑

y !=x

c(y − x)e‖f(y)−f(x)‖2 .(24)

Unlike φbi2, all of these functions have the property that the gradient and Hessian
depend on all components of f (i.e. both real and imaginary parts for a complex-
valued image). The first function has the same sparsity structure as φbi2, and can
be viewed as an approximate analogue of Total Variation. The second function is
a more direct analogue of Total Variation, but is non-smooth, with zero Hessian,
which would contribute to instability in the approximate Newton step. Fig. 3 shows
how the one approximates the other. For real-valued images, we could reformulate
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Figure 4. Two examples of the biTv kernel approximating the
absolute value. The approximation depends on the current value
of the difference, as shown on the left. On the right we see that
the difference with the absolute value is quite large when the going
from a small difference to a large one. This has the effect of limiting
step length for steps which would increase differences.

corresponds to the original kernel used in bilateral filtering, but reduces sparsity
and conditioning in the Hessian (since it may be nonconvex); while

φbiTv =
∑
y 6=x

εc(y − x)√∥∥∥f̃(y)− f̃(x)
∥∥∥2

+ ε

‖f(y)− f(x)‖2 ,(23)

(24)

which is a pixel-scaled version of φbi2 in which the scaling depends on the previous
estimate (f̃), and hence has the same sparsity (and symmetry among components).
It improves conditioning differently as a function of the current estimate, which may
improve actual convergence, while weakening bounds on worst-case convergence.
We designed this to be a better-behaved and easier-to-implement version of Total
Variation. Fig. 4 shows how the one approximates the other. For real-valued
images, we could reformulate this penalty using linearly-constrained optimization,
but this is out of the scope of this paper.

In the numerical results section, we report on the behaviour of φbi2 and φbiTv,
leaving the other kernels for a future work.

Every nonzero value of c corresponds to nonzero (sub/super)diagonals in Hφbi2.
In most applications, this means that the memory requirements associated with the
approximate Newton step will be O(|c| × (image size)), where |c| is the size of the
support of c. Functions c with support in a disk (ball for higher dimensions), give
the best trade-off in terms of memory/performance. The function in Fig. 3 shows
a degree of rotational symmetry, and its transfer function (its Fourier transform)
shows that pure spatial frequencies with periods smaller than six pixels, which
represent 91 percent of all non-aliasing frequencies, would be reduced in magnitude
by 95 percent by a gradient step (if the penalty were the entire objective function).
Choice of the support for c and the frequencies to try to eliminate warrant further
investigation, and in a future paper we will give the details of the optimization
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problem, profile a range of choices, and do the same for the spatial kernel of the
original bilateral filter.

Note that the penalty φbi is a bound on the difference between a pixel and the
weighted average of its neighbors:

(25)
∑
y 6=x

c(y − x) ‖f(y)− f(x)‖2 ≥

∥∥∥∥∥∥f(x)−
∑
y 6=x

c(y − x)f(y)

∥∥∥∥∥∥ ,
but that the inequality is strict generically. The latter would result in roughly twice
the number of nonzeros in the Hessian, reducing computational efficiency.

5.2. Masking. In slice/volume reconstuctions, the imaged object is often sur-
rounded by air, which in a perfect reconstruction appears as pure noise, but in im-
perfect reconstructions may contain incorrectly-attributed signal. If the object/air
interface can be determined from the device design, or from a low-quality recon-
struction, a penalty

(26) φmask =
∑

{x | x is air}

‖f(x)‖2

can be used to push the pixel values to zero (or whatever the appropriate signal
for the surrounding air or other substance is). The contribution to the gradient
is negative the image value, and the Hessian is diagonal, constant two outside the
object and zero inside. If set measurement is uncertain, the penalty can weight the
contributions from different pixels according to the certainty of not being inside the
object, or we could simply consider questionable pixels to be part of the object.

In limited experience, this works better than constraining those pixels to be zero
and then eliminating those variables from the problem. Perhaps this is true in high-
noise regimes where assigning external noise pixels to internal pixels can actually
make noise problems worse. It is certainly easier to implement boundary conditions
and do parallelization when the number of pixels in the object remains constant.

5.3. Partial Volume. In problems where the pixel values are modeled as linear
combinations of the signals corresponding to different object components (e.g. mus-
cle, fat, etc. for medical imaging, or forest, field, concrete, etc. for remote sensing),
the reconstructed vector pixel values should form a simplex (if the pure signals are
linearly-independent and the reconstructed values are expressed in a basis formed
by extension) or another convex polytope.

In either case, we can add penalty functions to penalize pixels outside the poly-
tope.

We see two ways of implementing such penalties: simplex basin and edge attrac-
tor. Let

(27) ψ(t) =

{
t2 t < 0
0 otherwise.

Define

(28) φsimplex(f) =
∑

i

ψ(fi) + ψ(1−
∑

i

fi).

For two-vectors, the corresponding basin of convergence is visualized in Fig. 5. This
penalty is convex and easy to compute. Its Hessian is discontinuous, however, but
this could be fixed by switching to the fourth power for the penalty components. If
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Figure 5. Surface rendering of the two-dimensional version of
φsimplex showing contours at 0,.2,.4,.6,.8.

the measurements can be converted to the natural basis of the simplex (extended in
the case of more measurements than components), the Hessian is diagonal. Unlike
the Hessians of other penalty functions, however, it is not constant on the diagonal
elements corresponding to one pixel. In fact, it could be one on any subset of the
diagonal and zero on the rest corresponding to components. (It is always one on
the remaining directions).

An alternative is
(29)

φmagnet(f) =

{
(f − f0)2 f in the exterior and projects to f0 on the boundary,
0 f in the interior.

This penalty has discontinuous Hessian, but the Hessian is diagonal in any basis
for the pixel values, because it is either two or zero on all diagonal elements corre-
sponding to one pixel. If all other penalties have this property, then storage for A,
B, and L can be reduced, along with the number of Cholesky decompositions. This
comes at the expense of penalizing movement along the boundary of the simplex
for pixels outside the simplex.

An alternative to both methods would be to use barriers. Since they are unde-
fined outside the simplex, this would require additional computation to ensure that
we never leave the simplex.

5.4. Segmentation. In many applications, images are used to make quantitative
determinations of component areas/volumes. For example, grey and white matter
volume is important in tracking development in children and degenerative diseases
in the elderly. Segmentation into components is also required before surface ren-
dering.

In such cases, where images are reconstructed from source data, the most likely
segmentations can be determined by incorporating a probability distribution on
pixel values into the reconstruction via a penalty function:

(30) φseg(f) =
∑

{g |mean values of components}

e−‖f−g‖2/σ2
.

This function is not convex for small values of σ, so we have to consider multiple
local minima. When it is convex, however, its unique minimum is in the interior
of the simplex and not assignable to any component. A reasonable way of getting
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to a better local minimum is to increase the weighting of this penalty and decrease
the size of σ as a function of iteration count. As the weighting of this penalty
function gets higher and σ gets smaller, pixels will be forced to move to one of the
component means. If the weighting is too high initially, however, some pixels will
be trapped in the wrong basin of convergence.

Another consequence of the nonconvexity is that the Hessian may have negative
values on the diagonal. This happens for pixel values far away from the simplex,
or when σ is small enough for pixels in the interior of the simplex. This will
reduce the diagonal of A and even without making A singular and the Cholesky
decomposition ill-defined, it tends to increase the eigenvalues of L−1BLT−1 which
reduces the rate of convergence of the Neumann series and increases the error in the
polynomial approximation of (A+B)−1. We can compensate by adding a multiple
of the identity to the combined Hessian, which means taking a smaller step which is
more gradient step and less Newton step, both of which slow convergence. Because
of these factors, it is best use this penalty after other penalties have stopped rapidly
converging, and only use it in combination with convex penalties.

5.5. Fit to Data. The preceding penalties are some of the penalties which encode
a priori information about the expected solution, which may be modified and in-
troduced at different iterations to improve convergence. Every problem must also
contain a fit-to-data term which is dictated by the problem.

Our assumption is that the problem has a readily computable forward problem:
a way of going from model to expected data. If the forward problem is linear
T : P → M , where D is the vector space of pixel data and M is the vector space
of measurement data, and the measurements are contaminated by white noise, the
fit-to-data term is

(31) φdata(f) = ‖Tf −m‖2 ,

where m are the measurements. The gradient is given by

(32) ∇φdata = 2TTTf − 2TTm,

and the Hessian by

(33) Hφdata = 2TTT.

Where the adjoint TT can always be computed by similar fast methods. The most
common case is when T is a close relative to the Radon transform or nonuniform
Fourier transform, in which case the adjoint can be accelerated using the same
methods.

Modifications for unequal or correlated noise are straightforward. Modifications
for nonlinear forward problems require another level of analysis. If the nonlinear
problem is convex, and the difference between the nonlinear model and its lin-
earization can be bounded in a trust region, then our framework provides the tools
required to solve the nonlinear problem. We will explore this issue in detail for
specific nonlinear forward problems in a future paper.

Unlike the previous penalties, Hφdata will in general be dense, and the exact
values of a split Adata + Bdata = Hφdata which matches the sparsity pattern for A
may be too expensive to determine exactly. In this case, the requirement on the
split is for A to have the same sparsity pattern as the diagonal blocks of the other
Hessian components, and B to come with the smallest possible spectral radius.
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Figure 6. Point spread function for MRI sparse sampling tra-
jectory, showing the pixels which correspond to the values of Adata.

For example, sparsely sampled radial sampling in MRI and sparse spiral sam-
plings in transmission tomography (including CT), result in TTT being approxi-
mately shift-invariant, given as convolution with a point spread function (psf). The
psf approximates a delta function at the origin, and for different sparse samplings
above includes low-intensity star patterns centred at the origin. The first term,
Adata is formed by taking the 2m + 1 adjacent pixels centred at the origin in the
row direction. Fig. 6 shows an actual psf (see [ACK06]), with a yellow outline to
show the pixels which contribute to Adata.

In many cases, other information can be used to improve the estimate for Adata,
by understanding the underlying physical model. For example, in SENSE imaging,
the columns of Adata, taken from the psf can be modulated by the sum of the
squared magnitudes of the coil sensitivities (Sm;i,j).

Even in cases where complete information about T may be unavailable, it may
be possible to find a good choice for Adata. For example, if T corresponds to partial
data loss for samples of the Fourier transform of the image, then the eigenvalues are
all one or zero (with eigenvalues coming from the Fourier basis), and Adata = 1/2
may be the best estimate available (which limits the absolute value of eigenvalues
of Bdata = TTT −Adata to ± 1/2.).

For the specific problem we are using for benchmarking, the images are complex.
The psf is real, of the form δ0,0 + δ0,128 (for 256× 256 images), which captures the
sparsity pattern of the full Hessian. The diagonal of the Hessian is

(34) (ASENSE2)(i,j),(i,j) =
∑
m

‖Sm;i,j‖2 ,

by which we mean the diagonal elements of the Hessian corresponding to pixel
(i, j). The value is the same for the real and imaginary parts of the image, and
the off-diagonal part of the Hessian corresponding to mixed real/imaginary and
imaginary/real parts of a single pixel are zero. This allows us to reduce the storage
of A and the number of Cholesky decompositions by 1/2.

On the other hand, the contribution to the off-diagonal blocks is not real, so
there are twice as many nonzero elements (not counting symmetry in the Hessian):

(35) (BSENSE2)(i,j),(i,j+128) =
∑
m

Sm;i,jS
∗
m;i,j+128,
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by which we mean that the four nonzero elements corresponding to the interaction
of pixels (i, j) and (i, j+128) correspond to multiplication by this complex number.
Since these values are applied directly in the form of a matrix-vector product, and
not involved in a Cholesky decomposition, there is no effect on space.

Since the energy of Hφdata is divided equally between the diagonal and off-
diagonal blocks, this problem can be expected to be more difficult to invert by
this method than typical target applications, for which the psf is not sparse, but
is concentrated at the origin. Further investigation is required to see how this fact
balances out the fact that we don’t have a fast exact decomposition into block
diagonal and off-diagonal parts.

The total memory footprint of this algorithm depends strongly on the fast algo-
rithm used to calculate T and TT , but the additional footprint for the regularization
will be (|supp(c)|/2 + width(c))×(image size). For most target problems, the com-
putational cost associated with c will be small relative to the fit-to-data term, so
the space requirements are what needs to be traded-off with the improvement per
iteration.

6. Numerical Results

Numerically, we verify linear convergence, with all computations done in single
precision. (All variables were declared to be single precision, and we verified that
single-precision instructions were used in some of the assembly code.) We verify
convergence with a variety of different penalty functions and in two regimes: a
small number of iterations, to simulate real-time imaging, and a larger number
to ensure convergence past visibly-detectable differences. For the simulated real-
time situations, we chose 15 iterations, because we wanted to add some additional
penalties and they worked best after the initial 10 iterations, but we wanted to keep
the number of iterations down. For 15 iterations, we compare the optimized kernel
c with the simplest possible kernel, the so-called five-point stencil with obviously
unacceptable results for the smaller kernel. We also compare the penalties φbi2 and
φbiTv for visual differences in edge sharpness.

The implementation is in ANSI C, with minimal space-optimizations, taking
advantage of the banded structure to allow large problems to execute in RAM. No
optimization was done for speed, but even at 100 iterations, the processing speed
is comparable the time gnuplot required to plot the results.

6.1. Convergence. We deliberately chose to test in a high-noise regime, so we
expected many iterations to be necessary. In Fig. 7, we see that the linear conver-
gence continues to the 100th iteration, both with the φbi2 and φbiTv penalties, plus
additional penalties after 10 iterations. For the first 10 iterations, see Fig. 8, we
used equal weighting for the penalty and fit-to-data term,

(36) minλφdata + λbi2φbi2 + λbiTvφbiTv + λmaskφmask + λmagnetφmagnet + λsegφseg

λ = 1 = λbi2 and use a very small regularizer α = .0125. In both cases, we perform
a simple mask calculation at this point (shrinking a circle until the average pixel
value outside the circle makes a sharp increase). We then add the mask penalty
λmask = 1 for the remaining even iterations and the magnet penalty λmagnet = 1 for
iterations 40...59. At iteration 20 we introduced φseg. We decreased the standard
deviation of the normal distribution according to σ = .4 + .03/(1+iteration− 20),
with the aim of introducing a convex penalty and gradually switching to a more
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non-convex penalty. (To be safe, we increased α to ensure that the Hessian stays
sufficiently positive definite.) After iterations 50 and 70 we decrease the weighting of
the fit-to-data term, to .1 and .07 respectively, increase the weight of segmentation
to 1.1 and 1.35, and increase the regularizer α to 1.5 and 3.

For comparison, see Fig. 9, we made the same choices with φbi2 replaced by φbiTv

after iteration 10, and ε, which controls the maximum thinness of the parabola
approximating the absolute value to .06 and then .03 after iteration 75. The con-
vergence plot shows good behavior with all combinations of penalties. Further
emphasizing the penalties at iteration 75 makes little difference over the change
at iteration 50. This is consistent with expectations based on L-curves for other
inverse problems, but does not verify such behaviour in this case.

If you look carefully at Fig. 9, you can see enhancement of some edges using
φbiTv versus φbi2, but not enough to recommend one over the other.

Of course, we are very interested in embedded real-time applications. In these
cases, we cannot wait for convergence, we must do the best we can in a given time
budget. To test the algorithm in this case, we repeat the same initial iterations,
but follow them with iterations with more aggressive parameters including φseg

from iterations 11 instead of from iteration 20 in the other case. As the graph
shows, being more aggressive does produce faster convergence, and looking at the
resulting images, Fig. 10, shows the images to be faithful representations of the
test object. For comparison, to show the value of optimizing c to produce gradient
directions which reduce high-frequency components, we did the same experiment
with a four-point kernel c (.25 weighting to all of the differences between horizontal
and vertical neighbors). As the images in the bottom of the figure show, we do not
get a faithful representation of the test object with this kernel. This demonstrates
both the superior performance of the optimized c, and the danger in introducing
non-convex penalties too early and dropping into the “wrong” basin of convergence.
In the embedded case, the convergence properties of the inverse problem may be
fixed at design time (when the data collection hardware and parameters are set).
So, although the data depends on individual experiments, the penalty weights and
parameters can be optimized in advance using expensive methods, i.e. pattern
search or more sophisticated methods.

7. Future Work

Implementation work is underway to show that we can achieve peak performance
on the target architecture (Cell). Operating system support for this platform is still
not mature, so there are challenging technical issues to overcome.

We are working on a technical report with a full set of optimized kernel functions
c, similar kernels for bilateral filtering, and an analysis of their performance relative.

We have shown our method is robust with respect to input noise and round-
ing errors associated with single precision, and that performance is good for a test
problem. It would be interesting to test it on standard imaging problems, e.g. de-
blurring and inpainting. In the standard problems, propagating information across
the image requires many iterations, or the solving of large linear systems. This
is motivation for recent work on domain decomposition and multi-grid methods,
see [GY05], [CC06]. Our method provides another potential solution to the signal
propagation problem, at the expense of some extra data shuffling. At each itera-
tion, we are making an approximate Newton step. We can bound the error in the
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Figure 7. Convergence using by stages the simplest to the most
complex penalty terms. Normalized to make the error in the direct
inverse 1. On the top we plot the total L2 error (versus the true
image). On the bottom we plot the difference between the error
of the current iterate and the error in the limit, to show that the
linear convergence continues up to the 100th iteration.
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Figure 8. Initial 10 iterations, using φbi2.
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Figure 9. After a total 100 iterations, introducing more penalty
terms as iteration count increases, comparing φbi2 (top) and φbiTv

(bottom).

approximation in the L2 norm, but in imaging problems, such measures can be mis-
leading. In our case, the Newton step is anisotropic, in the sense that for a problem
symmetric with respect to column translation, the Cholesky decomposition and
back substitution are exact for the regularized problem. Signals propagate along
the entire row in each step. Problems symmetric in the row direction, however, do
not behave in the same way, since signals cannot propagate farther than the width
of c multiplied by the order of the polynomial approximation. So our approach
could be described as domain decomposition into rows. But at the expense of a
transpose, we can alternate rows and columns (or as many dimensions as exist for
a particular problem), without incurring any additional penalty.

L-curves methods should be applied to the larger parameter selection problem
introduced here. Can the work on L-curves help with the related problem of steering
nonlinear optimization problems? The segmentation penalty is a simple nonlinear
term, but of definite value to the many applications which ultimately require seg-
mented volumes and not images. In the four-point kernel example, we have seen
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Figure 10. Fast 15 iterations, using width
√

18 stencil (top), and
4-point (width one) stencil (bottom).

what looks like convergence to unacceptable local minima. In this case, we could
ensure convergence to a good optimum by using φbi2 with the optimized kernel
c, and using sufficiently many initial iterations (based on a numerical termination
criteria), but it would be nice to be able to know the earliest point at which it is
safe to use the nonlinear penalty, since it significantly improves convergence.

Given our multiple penalties, we could apply a filter algorithm.
A problem which is not evident from the numerical tests, perhaps because of

the effectiveness of φseg, is that all of the penalty terms lead to biased estimation
problems, in which we expect the estimates to lie inside the simplex/polytope, even
if all the true values are on the boundary. Can the estimates be made unbiased in a
natural way? Is there a link to path-following methods in constrained optimization?

Although we conceived of this work as an alternative to Krylov space methods,
everything we have done to accelerate the Newton steps could be applied either
to precondition conjugate gradient iteration or to modify the objective of the CG
iteration.

8. Conclusion

We have presented a first-order framework for solving linear and nonlinear in-
verse problems whose model variables are arranged in grids, i.e. images, discrete
volumes, etc. This method is robust in the face of both reduced-precision com-
putation and high levels of measurement error. We have introduced a number of
penalty functions, some of which we have tested numerically. Contrary to our own
expectations, the simplest bilateral penalty to implement, φbi2, performs as well as
the more complicated φbiTv penalty.

This method is, by design, well-suited to all the types of parallelism we need to
exploit to benefit from current commodity architectures. The simple nature of its
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error analysis recommends it to environments where algorithms need to be certified
at design time, and provides a method for analyzing nonlinear problems.
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local constraints. J. Sci. Comput., 19(1-3):95–122, 2003.
[BSMH97] Michael J. Black, Guillermo Sapiro, David H. Marimont, and David Heeger. Robust

anisotropic diffusion: Connections between robust statistics, line processing, and an-

isotropic diffusion. In SCALE-SPACE ’97: Proceedings of the First International
Conference on Scale-Space Theory in Computer Vision, pages 323–326, London, UK,

1997. Springer-Verlag.

[CC06] Tony F. Chan and Ke Chen. An optimization-based multilevel algorithm for total
variation image denoising. Multiscale Model. Simul., 5(2):615–645, 2006.

[CCT04] Eric T. Chung, Tony F. Chan, and Xue-Cheng Taib. Electrical impedance tomog-

raphy using level set representation and total variational regularization. Journal of
Computational Physics, 2004.

[CGM99] Tony F. Chan, Gene H. Golub, and Pep Mulet. A nonlinear primal-dual method

for total variation-based image restoration. SIAM J. Sci. Comput., 20(6):1964–1977,
1999.

[Cha04] Antonin Chambolle. An algorithm for total variation minimization and applications.
J. Math. Imaging Vis., 20(1–2):89–97, 2004.

[DGR79] P. F. Dubois, A. Greenbaum, and G. H. Rodrigue. Approximating the inverse of a

matrix for use in iterative algorithms on vector processors. Computing, 22(3):257–268,
1979.

[GVL96] Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins Studies

in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, third
edition, 1996.

[GY05] Donald Goldfarb and Wotao Yin. Second-order cone programming methods for total

variation-based image restoration. SIAM J. Sci. Comput., 27(2):622–645, 2005.
[GZ03] Keith O. Geddes and Wei Wei Zheng. Exploiting fast hardware floating point in high

precision computation. In ISSAC ’03: Proceedings of the 2003 international sympo-

sium on Symbolic and algebraic computation, pages 111–118, New York, NY, USA,
2003. ACM Press.

[HHK+03] Walter Hinterberger, Michael Hintermüller, Karl Kunisch, Markus Von Oehsen,
and Otmar Scherzer. Tube methods for bv regularization. J. Math. Imaging Vis.,

19(3):219–235, 2003.
[Hub81] P. J. Huber. Robust Statistics. John Wiley, New York, 1981.
[JMP83] O. G. Johnson, C. A. Micchelli, and G. Paul. Polynomial preconditioners for conjugate

gradient calculations. SIAM J. Numer. Anal., 20, 1983.

[JO06] Jin Hyuk Jung and Dianne P. O’Leary. Cholesky decomposition and linear program-
ming on a gpu. Technical report, University of Maryland, 2006.

[KD06] J. Kurzak and J. Dongarra. Implementation of the mixed-precision high performance
linpack benchmark on the cell processor. Computer Science Tech Report UT-CS-06-
580, LAPACK Working Note #177, University of Tennessee, September 2006.

[KDH+05] J. A. Kahle, N. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy.

Introduction to the cell multiprocessor. IBM Journal of Research and Development,
49(4/5):589–604, July/September 2005.



24 CHRISTOPHER KUMAR ANAND

[LP06] Germana Landi and Elena Loli Piccolomini. Representation of high resolution images

from low sampled fourier data: Applications to dynamic mri. J Math Imaging Vis,

26:27–40, 2006.
[MSP86] P. Margosian, F. Schmitt, and D. E. Purdy. Faster mr imaging: Imaging with half the

data. Health Care Instr., 1:194, 1986.

[NMDI94] M. Nikolova, Ali Mohammad-Djafari, and J. Idier. Inversion of large-support illcondi-
tioned linear operators using a Markov model with a line process, 1994.

[PM90] Pietro Perona and Jitendra Malik. Scale-space and edge detection using anisotropic

diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-
12(7):629–639, July 1990.

[PWBB01] Klaas P Pruessmann, Markus Weiger, Peter Börnert, and Peter Boesiger. Advances in

sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med, 46:638–651,
2001.

[ROF92] Leonid I. Rudin, Stanley J. Osher, and Emad Fatemi. Nonlinear total variation based
noise removal algorithms. Physica D, 60:259–268, 1992.

[SKPJ04] Alexei A. Samsonov, Eugene G. Kholmovski, Dennis L. Parker, and Chris R. John-

son. Pocsense: Pocs-based reconstruction for sensitivity encoded magnetic resonance
imaging. Magnetic Resonance in Medicine, 52(6):1397–1406, 2004.

[TM98] Carlo Tomasi and Roberto Manduchi. Bilateral filtering for gray and color images. In

ICCV, pages 839–846, 1998.
[vdV82] Henk A. van der Vorst. A vectorizable variant of some iccg methods. SIAM Journal

on Scientific and Statistical Computing, 3(3):350–356, 1982.

[WNC01] Jean-Marc Wagner, Frédéric Noo, and Rolf Clackdoyle. 3-d image reconstruction from
exponential x-ray projections using neumann series. In ICASSP, 2001.

[ZBS01] Yongyue Zhang, Michael Brady, and Stephen Smith. Segmentation of brain mr im-

ages through a hidden markov random field model and the expectation-maximization
algorithm. IEEE Transactions on Medical Imaging, 20(1):45–57, 2001.

Department of Computing and Software, McMaster University, Hamilton, Ontario,

Canada L8S 4K1


