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This paper gives a partial answer to the question: “Can type systems detect
modelling errors in scientific computing, particularly for inverse problems
derived from physical models?” by considering, in detail, the major aspects
of inverse problems in Magnetic Resonance Imaging (MRI). We define a
type-system that can capture all correctness properties for basic MRI in-
verse problems, including many properties that are not captured with cur-
rent type-systems, e.g., frames of reference. We implemented a type-system
in the Haskell language that can capture the errors arising in translating a
mathematical model into a linear or nonlinear system, or alternatively into
an objective function. Most models are (or can be approximated by) linear
transformations, and we demonstrate the feasibility of capturing their cor-
rectness at the type level using a difficult case, the (discrete) Fourier trans-
formation (DFT). By this, we mean that we are able to catch, at compile
time, all errors known to us in applying the DFT. We describe the Haskell
implementation of vector size, physical units, frame of reference, and so on
required in the mathematical modelling of inverse problems without regu-
larization.
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Imagine yourself waiting for a potentially life-saving operation. By using keyhole
surgery, your expected recovery time is a small fraction of what it would have been
just a few years ago. To get the operation right, your surgeon is relying on plans
based on Magnetic Resonance Imaging (MRI). How safe is it to rely on such images
and the software used to produce them? Today, the answer is that it depends on
the quality of the test plan and the adherence to that test plan. Unfortunately,
for real problems created using common software development environments, the
combinatorial explosion in possible test cases means that it is very easy to miss
cases and fail to detect flaws, e.g., the reversal of left and right in an image. Such
are the types of errors detected by one of the authors in commercial software after
multiple rounds of government-mandated testing.

How can we do better? How can we leverage the most effective tools we have
today? What is the maximum level of certainty we can provide?

In the following paper, we will present evidence that the correctness tool used
by the majority of practitioners—static type checking by a compiler—is capable of
flagging all of the modelling errors common in image and signal processing. We
strongly believe that the same approach could yield static error detection for most
errors in scientific computing and suspect that the absence of typing yielding static
error detection indicates shortcuts in modelling which may themselves be considered
latent errors.

The power of static typing depends on the language used and varies greatly, from
simple checking of storage-type compatibility in C to elaborate proofs of correctness
embedded into types in Agda Bove et al. [2009]. We chose Haskell Hudak et al.
[2007] as our implementation platform because Haskell is a mature language well
supported by libraries that allow the encoding of properties such as list length which
very few languages can reason about at compile time. We started this work before
type-level integers.

Strictly speaking, the only difference with dynamic type checking should be that
type errors will arise at run-time rather than compile time. In practice, static
type checking is used by many developers in many fields and, at least for Haskell,
basic algorithms have long-established soundness arguments, even experimental
type features have received public scrutiny and peer review. Dynamic type checking
is likely to be developed in an ad hoc manner by domain experts unaccustomed to
the types of arguments needed to prove the soundness of the type checker. While it
is certainly faster to implement dependent types in a dynamic type checker written
for a specific domain, we believe we can achieve our most important goals with stable
type extensions to Haskell 2010 today. By providing interesting examples we hope
to motivate the continuing development of these type extensions, and extensions
for enhancing the utility of embedded Domain Specific Languages (DSLs).

Coming back to our example: static type checking means that a sick patient
need never come back for reimaging because of a type error at run-time.

Of course, type checking is not new and manual type-inference for physical
units?-which today we call Dimensional Analysis–was identified as a best prac-
tice in physics as far back as Rayleigh Rayleigh [1915]. What is new is our attempt
to encode sufficient domain knowledge into types so that the process of implement-
ing a software system to solve a mathematical model can also be checked. To the
best of our knowledge, the considerable work on type safety falls on one side or
the other of this process; either implementing physical units to automate simple
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unit conversions and to some extent dimensional analysis, or implementing shape
constraints on programs so that, for example, array sizes match (or are coerced to
do so) and tree branchings correspond.

In the following, we make our case for substantial protection against common
errors in scientific programs by way of example. In section 1, we review existing
uses of type-level programming to enhance correctness, including cardinality checks
and the use of physical units in §1.1. The following section (2) starts by exploring
a motivating example, the Fourier Transform (FT), as it is used in inverse imaging
problems. While matching vector sizes at compile time may avoid run-time seg-
mentation faults, this example shows that it does not prevent common errors in
applying the FT. The rest of the section introduces the concepts we need to avoid
these errors: frames of reference §2.2 and discretization via sampling §2.3. This
section shows that such concepts can be encoded so that errors are caught by the
compiler or avoided through type inference. We close the section with details of
the encoding of floating point numbers and arithmetic, see §2.4.

We chose to start with the FT example because detecting common errors is
more valuable than detecting infrequent ones. To really support the development
of correct software, error reports have to be clear to the intended domain experts.
We found this is not always achieved by the concisest implementations and we dis-
cuss the choices we made in §3. Our earlier implementations, see Moghadas [2012],
preceded the availability of type-level naturals and implementing types with intel-
ligible errors in that case has influenced our choices in the current implementation.
We include two previous implementations for comparison and discuss differences in
appendix B.

The Haskell compiler ghc supports several powerful extensions including ad-
vanced type-level programming, starting with multi-parameter type classes together
with functional dependencies Jones [2000], which have been recast but not com-
pletely superseded by type families Kiselyov et al. [2010], data kinds Yorgey et al.
[2012], etc. We have included a short appendix, A, so that even domain experts
with only a basic knowledge of Haskell can learn to recognize these new features
enough to read this paper, use the defined types, and figure out the type errors.

Finally, because type-level programming cannot rely on testing and verification
mechanisms available to data-level (normal) programs, we include a third appendix,
C, with a summary of our testing strategy.

This is a proof of concept rather than a usable library for two reasons: (1) it
only encodes a small part of the explicit and implicit assumptions used to model the
physical world using mathematics and (2) it is a type wrapper waiting for types to
wrap. The initial implementations wrap Doubles or [Double]s, but the real value of
this work will come from wrapping other types, including symbolic expression types
used for mathematical modelling and code generation. A prototype library capable
of symbolically generating numerical solvers for some inverse problems arising in
Magnetic Resonance Imaging, see Pavlin [2012], exists and will be described in a
future paper, but we hope our implementation could be used to add a type safety to
other libraries, for example DPH Keller et al. [2012], repa Lippmeier et al. [2012],
etc. Svensson and Sheeran [2012].
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1. Existing Static and Dynamic Type Checking

One basic aspect of type safety in scientific computation is size-matching in linear
algebraic computation. For example, if we have two vectors with different sizes, our
type-system should be able to capture the error when we attempt to add those two
vectors. This has been demonstrated for lists (see Kiselyov [2005] for a complete
implementation based on ideas introduced in Okasaki [1999] and McBride [2002]),
but is not yet used by the most downloaded packages, e.g., hmatrix, to do linear
algebra and vector computation. In fact, some packages produce results in cases
that we would expect at least run-time errors, e.g., when adding two vectors with
different lengths. In Haskell, we can augment vector and array types with run-time
size information, so we will be able to verify such computational errors at run time
(dynamic type checking). For example, we can define a vector by:

data Vector a = Vector Int [ a ] deriving (Show,Eq)

Then, we can make this vector type an instance of the Num class to make it possible
to add two vectors.

instance (Num a ) ⇒ Num ( Vector a ) where

( Vector nx x ) + ( Vector ny y ) =

i f nx ≡ ny then Vector nx $ zipWith (+) x y

else error $ ” adding mismatched vec to r s o f s i z e s ”

++ show nx ++ ” and ” ++ show ny

v1 = Vector 3 [ 1 , 2 , 3 ]

v2 = Vector 4 [ 1 , 2 , 3 , 4 ]

This implementation will cause a run time error when we add those two vectors:

∗∗∗ Exception : adding mismatched vec to r s of s i z e s 3 and 4

As we mentioned, we are interested in catching all errors involving vector computa-
tion at compile time (static type checking) which will be discussed later, following
the approach of Kiselyov [2005].

1.1. Physical Units. The use of physical units for type checking and type infer-
ence has a long history, they were used by Galileo and Newton and certainly existed
prior to that, long before the notion of physical units could be formalized. Although
this is well known, it has not been well used. Lord Rayleigh attributed this to the
disinterest of mathematicians and the inadequacy of the notation used by engineers
Rayleigh [1915]; the same is true today, especially if we read “notation” as syntax of
programming languages. As implemented by the Dimensional package, it is possible
to check the physical units in arithmetic computation at compile time. Physical
(dimensional) information is encoded in types which wrap numerical quantities,
allowing the type checker to verify the correctness of operations on those physi-
cal quantities at compile time. Using this library can prevent us from performing
meaningless computation like adding 2m to 20s. We will give an example using this
package after explaining its physical unit encoding.

There are seven basic physical dimensions: length, mass, time, electric current,
thermodynamic temperature, amount of substance, and luminous intensity. They
can be combined to produce compound dimensions. In the Dimensional package,
physical dimensions are represented by the powers of the seven basic dimensions.
It implements this using type-level numbers to represent the powers of the basic
dimensions. This package uses a type-level encoding called NumTypes which is defined
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in the Numeric.NumType module of the Dimensional package. Data type Dim collects
the seven basic dimensions,

data Dim l m t i th n j

where each type variable represents the power of its corresponding basic unit, e.g.,
length squared to represent an area. Type variables l, m, t, i, th, n, and j represent
the powers of length, mass, time, electric current, temperature, luminous intensity,
and amount of substance respectively. Type synonyms for the types of common
quantities are defined, e.g.,

type DLength = Dim Pos1 Zero Zero Zero Zero Zero Zero

means m1, metre to the power one and other basic units to the power zero, using
type-level numbers Zero, Pos1 for 1, etc. Similarly, other built-in type synonyms
are

type DVolume = Dim Pos3 Zero Zero Zero Zero Zero Zero

type DOne = Dim Zero Zero Zero Zero Zero Zero Zero

type DMass = Dim Zero Pos1 Zero Zero Zero Zero Zero

type DTime = Dim Zero Zero Pos1 Zero Zero Zero Zero

Then, type synonyms for quantities of particular physical dimensions are defined

type Dimens ion less = Quantity DOne

type Length = Quantity DLength

type Mass = Quantity DMass

type Time = Quantity DTime

and so on.
We cannot present all of the implementation details of this package but it is

instructive to look at the implementation of one function, addition:

(+) : : Num a ⇒ Quantity d a → Quantity d a → Quantity d a

The data type Dimensional encodes both units and quantities in one data type

newtype Dimensional v d a = Dimensional a deriving (Eq , Ord , Enum)

where v and d are phantom type variables. The phantom type variable d represents
the physical dimension of the Dimensional and v distinguishes between units and
quantities using one of the two following phantom types:

data DUnit

data DQuantity

There are type synonyms for units and quantities:

type Unit = Dimensional DUnit

type Quantity = Dimensional DQuantity

A Quantity is a number value which has a physical unit and it is represented by the
product of a number and a Unit. The ‘(∗ ∼)’ operator is a convenient way to declare
quantities as such a product.

(∗∼) : : Num a ⇒ a → Unit d a → Quantity d a

We can define two physical quantities representing length and mass with the fol-
lowing definition:

h = 2 ∗∼ meter

m = 3 ∗∼ gram

To show the power of static type checking for such a computation, we can try to
add those two variables, h and m, resulting in a compiler error:
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Couldn ’ t match expected type ‘Numeric .NumType . Pos

Numeric .NumType . Zero ’

with ac tua l type ‘Numeric .NumType . Zero ’

Expected type : Quantity DLength Prelude . Integer

Actual type : Quantity DMass Prelude . Double

In the second argument of ‘ (+) ’ , namely ‘m’

In the expr e s s i on : h + m

As you can see, interpretation of the error message requires knowledge of the Haskell
type system and the implementation of the Dimensional package. It is not intuitive
to a domain expert (e.g., an applied mathematician), even though this is a rel-
atively simple error. One of our goals is to make the error messages easier for
non-programmers to understand. This will guide the design our type-system.

We will not use the Dimensional package in the reminder of this paper.

2. Enhanced Typing for Scientific Computation

We have summarized two general aspects of type safety–container size and phys-
ical units–implementated in Haskell. Some aspects of previous implementations
are not compatible with our goals, e.g., separation of numbers and units in the
Dimensional package which allows unsafe computations with no physical interpreta-
tion to be wrapped in types after the computation, thereby bypassing the type
checker. Because of this, we implemented our own type wrappers, including two
implementations of type-level numbers, integrating previous ideas. To have a sat-
isfactory type-system for verifying scientific/medical computation, we needed ad-
ditional features in our type-system. One of those features is combining both sizes
and units to produce types to capture properties involving the interaction of size
and units to produce a new class, called a Frame, which captures sufficiently the
properties of a discretization to guarantee the correct use of such discretizations in
mathematical models. The combination of these features is much greater than the
sum of the parts. In our system, all measurements need to take place in a frame of
reference with an origin so that only comparable quantities are combined.

Unlike the Dimensional package, there is no way of separating units from quantities
and performing unsafe computation. To be clear, we are proposing methods for
making mathematical modelling type safe, which may not be practical or useful
for all stages of program generation. For example, a linear equation solver will be
consistent for one set of units if it is consistent for other units. It is well-understood
how to test it and correctness is relative to machine precision and other properties of
the system, rather than absolute. Furthermore, it would be undesirable to recompile
it every time it is used for a new application. Conversely, type safety is so valuable
for mathematical modelling because other methods–in particular testing–are, at
best, difficult to apply.

2.1. Motivating Example: The Fourier Transform. Our first example illus-
trates the power of our new types to capture errors which are easy to make, partly
because it seems cumbersome to fully specify them in natural language or the in-
formal mathematics used by applied mathematicians and scientists. The DFT is
widely used in scientific computing and is the basis of Magnetic Resonance Imaging.
With type-level sizes, we can capture incorrect applications producing 256-sized ar-
rays from 128-sized inputs. With physical units, we can capture errors in which
tissue density and velocity data are erroneously added together before or after the
DFT, but neither is capable of detecting the most common and hard to detect
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errors. This includes scaling problems related to the Nyquist Theorem and erro-
neously combining data in time- and frequency-space. We can capture all of these
errors and even use type inferencing to infer missing type information (e.g., sample
resolution). To appreciate the value of this correctness checking, we first review the
properties of the DFT, beginning with sampling theory.

Recall that there are different FTs for functions of the real line, period functions
of the real line, sequences, and periodic sequences. Physics usually demands real
numbers as the domain but, computationally, the discrete transform is much more
efficient. Rather than causing a general degradation in fidelity, the approximation
errors due to replacing the continuous transform with the discrete transform can
be catastrophic in the form of aliasing but they are understood and avoidable, as
explained below.

Sampling is the process of converting a continuous signal into a numeric sequence
so we can process the information by computer. The FT of a continuous signal x(t),
x : R→ R is defined by:

(1) X(f) =

∫ ∞

−∞
x(t) · e−2·π·i·f ·tdt

where t, f ∈ R. The analogous transform for sampled signals {xn : n ∈ {0, ..., N −
1}} is

(2) Xk =

N−1∑

0

xn · e−i·2·π·k·n/N

In the following, we show how to use the DFT to approximate the FT of a continuous
signal x(t) and how aliasing errors arise.

In Fig. 1, part (a) represents a band-limited signal x(t), part (b) represents
the FT of that signal X(f) which is zero outside the interval (−fm < f < fm)
because it is band-limited, part (c) represents the periodic unit impulse train, part
(d) illustrates the FT of the impulse train illustrated in (c), part (e) represents the
sampled version of x(t) and part (f) represents the FT of the sampled version of
x(t). The samples xs(t) can be viewed as the product of the function x(t) with a
periodic impulse train (Fig. 1.(c)). The train is represented as Sklar [1988]:

(3) xδ(t) =

∞∑

−∞
δ(t− nts) ,

where ts is the sampling period. We abuse notation by writing δ(t) : R→ R as the
unit impulse “function” although is is formally a distribution, which means

(4) x(t) ·(pointwise product) δ(t− t0) = x(t0) ·scaling δ(t− t0).

The sampled version of x(t) can be represented by:

(5) xs(t) = x(t)xδ(t) =

∞∑

n=−∞
x(t)δ(t− nts) =

∞∑

n=−∞
x(nts)δ(t− nts)

Using the Convolution Theorem, the pointwise multiplication in the time domain
(5) is equivalent to convolution in frequency domain X(x) ∗ X(xδ) = X(x) ∗ fδ,
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Figure 1. Fourier Transform

where fδ, is the impulse train with step fs = 1/ts, which is the FT of xδ,

(6) fδ =
1

ts

∞∑

n=−∞
δ(f − nfs)

Another property of convolution is that convolution with an impulse function shifts
the original function:

(7) X(f) ∗ δ(f − nfs) = X(f − nfs)
Hence, the FT of the sampled version of x(t), Xs(f), is represented by:

(8) Xs(f) = X(f)∗Xδ(f) = X(f)∗
[

1

ts

∞∑

n=−∞
δ(f − nfs)

]
=

1

ts

∞∑

n=−∞
X(f −nfs)

In conclusion, the FT of the sampled signal is the sum of multiple shifted spectra–
of the original signal–centred at the sampling frequency and its harmonics. As
illustrated in Fig. 1.(f), if fs = 2fm then there is no overlap (aliasing) between the
multiple spectra. The Nyquist theorem states that any band limited signal x(t)
that has no frequency component for f > fs can be uniquely reconstructed from
its samples X(nT ) if the sampling frequency satisfies fs > 2fm which is called
the Nyquist criterion. This criterion is one of the important FT properties which
should be encoded in our the type-system because when the sampling resolutions
exactly satisfy the Nyquist criterion the sampled spaces connected by the Fast FT
will not exhibit aliasing.

In experimental MRI, tissue density information is not directly measurable. In-
stead, MRI experiments collect samples of the continuous FT of the tissue density
and other tissue properties of interest. The dual-space to physical space is called
k-space, which is the domain of the FT. Note that, unlike applications of the FT
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Figure 2. K-space and Image-space Data

to sound production, MRI requires multi-dimensional transforms (3D for normal
space, 2D for planar imaging, and potentially higher dimensions for velocity, diffu-
sion and spectrographic imaging). Correctness in MRI reconstructions depends on
precisely encoding the meaning of data at the type level to prevent errors in pro-
cessing, from the obvious error of mixing k-space and image-space data to subtle
errors involving incompatible resolutions in k- and image-space, which would create
aliasing or images with the wrong scale.

First, the number of samples (resolution) should be equal in both k- and image-
space which is represented by N . Second, encoding the Nyquist criterion into our
type-system results in the appropriate relation between sampling rates in k- and
image-space. According to Fig. 1, the FT of a non-periodic discrete function xs(t) is
a periodic continuous function. The Xs(f) is a continuous signal in the frequency
domain which should be discretized to be processed numerically. Likewise, the
sampling in the time domain, the sampled version of XS(f), can be obtained by
multiplying by another impulse train. Such multiplication in the frequency domain
affects the original signal in the time domain by making it periodic. Hence we can
represent the sampled data in k- and image-space by Fig. 2.

In the image-space:

N : number of samples

tm : the sampling step size in the image-space

2fm : the bandwidth collected in k-space,

where image-width = N × tm.
In k-space:

N : number of samples

ts : the sampling step size in the k-space

ts = 1/fs
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According to the Nyquist criterion 2fm = fs, therefore:

N × tm × tk = 1(9)

This enforces constraints on k- and image-space step sizes. To encode this constraint
in our type-system, we need to first introduce the concept of a Discretization and use
it to define an FT class.

As an example, we consider a discretized function (meas1) and infer the type of
its FT, then we observe that their step-sizes satisfy (9). The discretized function
meas1 has type:

meas1 : : D i s c r e t i za t i on1D (F ”LabFrame” )

(NAT 4)

[ f l o a t | 0 .002 | ]

Meter

[Complex Double ]

We have not yet introduced our type-level numbers but, for example, NAT 3 is
a type-level natural which represents the number 3. [ float |0.002| ] is a Template
Haskell expression which will be expanded to FLOAT Pos 2 (E 3), which represents
the number 2 ∗ 10−3.

We can get the type of its FT from the ghci interpreter:

>: t f t meas1

f t meas1

: : D i s c r e t i za t i on1D

(F ”LabFrameT” )

(NAT 4)

(FLOAT ’ Pos 125 ( ’E 0) )

( SIUnit ( ’M 1) ( ’ S 0) ( ’Kg 0) ( ’A 0) ( ’ Mol 0) ( ’K 0) )

[Complex Double ]

The number of samples in both cases is 4. Step-size is represented as an infinite
precision, floating point number. Therefore, the step-size of meas1 is 0.002m and the
step-size of ft meas1 is 125(1/m) which satisfies (9) (4× 0.002m× 125(1/m) = 1).

Having motivated their usefulness, we now introduce our types in logical order.

2.2. Frames. A frame of reference is a coordinate system or a vector space basis
together with physical units and an origin from which to measure some character-
istics of objects in it. In the existing type systems, there is no way of recording
the frame of reference. To formalize it in our type-system, we define a class whose
instances are frames:

data F ( s : : Symbol ) = F

class (KnownUnit ( BaseUnit frame ) ) ⇒ Frame frame where

type BaseUnit frame : : ∗ → ∗
name : : frame → St r ing

default name : : (KnownSymbol x , frame ∼ F x) ⇒ frame → St r ing

name = symbolVal

Note that the units are explicitly encoded on the BaseUnit but the basis and origin
are implicitly encoded. The constraint in the class declaration requires that BaseUnit

be an instance of KnownUnit which is an assertion that the type is a valid unit.
As a reminder, a vector space is a set of vectors on which two operations are de-

fined, vector addition and scalar multiplication and it should satisfy several axioms
with respect to these two operations. Moreover, given any vector space V over a
field F , the dual space V ∗ is defined as the set of all linear maps φ : V → F .
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Because a frame is mathematically similar to a vector space, we can define the
dual frame concept analogous to the dual vector space. Hence, for any given Frame a,
the set of linear maps from Base a to Unitless is the dual frame of Frame a. To formalize
the definition of dual frame, first we need to formalize the duality between units:

type AssertDualUnits a b = Assert ( a : ∗ : b ≡ ? U n i t l e s s ) ( DualUnits a b)

where :∗: is unit multiplication. The Assert (defined in §3) type allows for better
control over the way error messages are printed.

Using this definition, we can assert the duality between frames by:

class (Frame a , Frame b , AssertDualUnits ( BaseUnit a ) ( BaseUnit b)

) ⇒ AssertDualFrames a b | a → b , b → a

where, in our type-system, the user has to specify the frame of reference and assert
duality between frames such that if one frame changes alone it will cause a compile-
time error.

The functional dependency, a → b, b → a, asserts that taking the dual is a bijec-
tion on the set of frames, see appendix A for a longer explanation.

The user must then declare the proper frames and make the assertion that they
are dual:

instance Frame (F ”LabFrame” ) where

type BaseUnit (F ”LabFrame” ) = Meter

instance Frame (F ”LabFrameT” ) where

type BaseUnit (F ”LabFrameT” ) = Recip Meter

name = ”LabFrameDual”

instance AssertDualFrames (F ”LabFrame” ) (F ”LabFrameT” ) where

If the user defines a frame improperly and attempts to assert the duality of the
improperly defined frames

instance Frame (F ”BadFrame0” ) where

type BaseUnit (F ”BadFrame0” ) = U n i t l e s s

instance Frame (F ”BadFrame1” ) where

type BaseUnit (F ”BadFrame1” ) = Meter

instance AssertDualFrames (F ”BadFrame1” ) (F ”BadFrame0” ) where

they will meet this compile time error:

No instance f o r

( DualUnits

( SIUnit ( ’M 1) ( ’ S 0) ( ’Kg 0) ( ’A 0) ( ’ Mol 0) ( ’K 0) )

( SIUnit ( ’M 0) ( ’ S 0) ( ’Kg 0) ( ’A 0) ( ’ Mol 0) ( ’K 0) ) )

a r i s i n g from the s u p e r c l a s s e s of an instance d e c l a r a t i o n

In the instance d e c l a r a t i o n f o r

‘ AssertDualFrames (F ”BadFrame1” ) (F ”BadFrame0” ) ’

The source of the problem is clear from the error.
To justify the necessity of formalizing the frame into an enhanced type-system,

consider the orientation in medical imaging. Image orientation identifies the spatial
orientation of the imaging plane with respect to the patient. The orientation is
important to the correct diagnosis. Because, when a physician examines a medical
image related to a patient’s leg, they need to know whether it is the left or right
leg; otherwise an operation may be done on the wrong leg. Currently, this level of
correctness cannot be guaranteed by the existing type systems. This property of
imaging is formalized using the Frame in our type-system.
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Consider a discretized measurement meas1 made in the LabFrame.

meas1 : : D i s c r e t i za t i on1D (F ”LabFrame” )

(NAT 4)

[ f l o a t | 0 .002 | ]

Meter

[Complex Double ]

meas1 = Di s c r e t i za t i on1D [ 0 , 1 , 2 , 3 ]

The FT of meas1 is relative to the dual frame of LabFrame, meaning that adding meas1

with its FT is not a valid operation because they are not co-measurable. So, whereas
a conventional language which does size checking would allow this operation, we
flag a type error:

>add ( f t meas1 ) meas1

No instance f o r

(Add

( Di s c r e t i za t i on1D

(F ”LabFrameT” )

(NAT 4)

(FLOAT ’ Pos 125 ( ’E 0) )

( SIUnit ( ’M 1) ( ’ S 0) ( ’Kg 0) ( ’A 0) ( ’ Mol 0) ( ’K 0) )

[Complex Double ] )

( D i s c r e t i za t i on1D

(F ”LabFrame” )

(NAT 4)

(FLOAT ’ Pos 2 ( ’ E 3) )

( SIUnit ( ’M 1) ( ’ S 0) ( ’Kg 0) ( ’A 0) ( ’ Mol 0) ( ’K 0) )

[Complex Double ] )

2.3. Discretizations and FTs. The Discretization data type is defined as:

data Disc r e t i za t i on1D frame numSamples s t e p S i z e rangeU va l where

Disc r e t i za t i on1D : :

(Frame frame , IsNat numSamples , I sF l oa t s t epS i ze ,

rangeU ∼ SIUnit m1 s1 kg1 a1 mol1 k1

) ⇒ va l → Disc r e t i za t i on1D frame numSamples s t e p S i z e rangeU val

where frame is an abstract vector space basis; numSamples refers to the number of
samples; stepSize specifies the step-size in the units attached to the frame; rangeU is
the physical unit of the discrete values; and val represents the discrete values.

We start with an application of this enhanced data type.
To increase the signal to noise ratio, one may take the average of multiple sam-

plings of the signal of interest. There are some constraints on the sampling to have
a meaningful average. For example, if two samplings have the same number of sam-
ples but different sampling steps, then adding those two samplings does not make
sense. Suppose we have two samplings of the height of water in a canal illustrated
in Fig. 3. In the blue/solid sampling, there are 12 samples and the sampling step
is 0.01. In the red/dashed sampling, there are 12 samples, but the sampling step is
0.005. Those two samplings can be defined in our type system using the Discretization

data type:

canalSample1 : : D i s c r e t i za t i on1D (F ”CanalFrame” )

(NAT 12)

[ f l o a t | 0 .01 | ]

Meter

[ Double ]

canalSample1 =

13
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Figure 3. Sampling of height of water in a canal

Disc r e t i za t i on1D [ 1 , 1 . 2 , 1 . 3 , 1 . 1 2 , 1 . 2 3 , 1 . 1 2 , 1 . 1 5 , 1 . 2 5 , 1 . 1 8 , 1 . 2 0 , 1 . 2 4 , 1 . 2 8 ]

canalSample2 : : D i s c r e t i za t i on1D (F ”CanalFrame” )

(NAT 12)

[ f l o a t | 0 .02 | ]

Meter

[ Double ]

canalSample2 =

Di s c r e t i za t i on1D [ 1 , 1 . 2 1 , 1 . 2 , 1 . 4 2 , 1 . 3 , 1 . 3 2 , 1 . 1 2 , 1 . 2 5 , 1 . 2 3 , 1 . 2 0 , 1 . 1 2 , 1 . 2 8 ]

Trying to add those two samplings to each other

> canalSample1 U.+ canalSample2

will cause a compile time error:

No instance f o r

(Add

( Di s c r e t i za t i on1D

(F ”CanalFrame” )

(NAT 12)

(FLOAT ’ Pos 1 ( ’ E 2) )

( SIUnit ( ’M 1) ( ’ S 0) ( ’Kg 0) ( ’A 0) ( ’ Mol 0) ( ’K 0) )

[ Double ] )

( D i s c r e t i za t i on1D

(F ”CanalFrame” )

(NAT 12)

(FLOAT ’ Pos 2 ( ’ E 2) )

( SIUnit ( ’M 1) ( ’ S 0) ( ’Kg 0) ( ’A 0) ( ’ Mol 0) ( ’K 0) )

[ Double ] )

The error message indicates that the discretizations have different types and adding
them is not a valid operation. Ideally, we would prefer the error message to say
the sample spacing needs to be identical but it would not be difficult for a domain
expert to understand this error.

As we mentioned, another powerful feature in our type system is the FT class
which is defined by:

class FT a b | a → b , b → a where

f t : : a → b

invFt : : b → a

To implement an instance, we assert the preconditions required by the Discretization1D

constructor:
14
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instance (

AssertDualFrames frame1 frame2 , Frame frame1 , Frame frame2 ,

I sF l oa t s tepS ize2 , I sF l oa t s tepS ize1 , ToFloat numSamp ∼ numSampF,

and encode the Nyquist criterion:

MultNZ s t epS i z e1 numSampF t0 ,

MultNZ t0 s t epS i z e2 t1 ,

t1 ∼ FLOAT Pos 1 (E 0)

) ⇒
FT ( Di s c r e t i za t i on1D frame1 numSamp s t epS i z e1 rangeU [Complex Double ] )

( D i s c r e t i za t i on1D frame2 numSamp s t epS i z e2 rangeU [Complex Double ] )

where

f t ( D i s c r e t i za t i on1D x) = ( Di s c r e t i za t i on1D $ FFT. f f t x )

invFt ( D i s c r e t i za t i on1D x) = ( Di s c r e t i za t i on1D $ FFT. i f f t x )

where fft and ifft come from the pure−fft package. Two parameters of that type class
represent a discretized function and its FT. Using the multi-parameter type classes
together with functional dependency, it is possible to infer the type of the FT of a
discretized function if it knows the type of the discretized function itself and vice
versa. In the instance definition, there are some important constraints on the two
parameters of the FT class which are related to FT properties. First, the number of
samples in those two parameters should be the same, which is encoded by clarifying
the same numSamp for those discretized parameters. Second, the discretized functions
(class parameters) are related to two dual frames, and this duality must be asserted
by the user. The most subtle constraint is encoded via two instances of the MultNZ

class. This constraint specifies that the product of the first two parameters should
be equal to the third parameter. To allow for type inferencing, we must also assert
that the multiplication is nonzero. Since equation (9) involves a triple product, we
need two multiplications to assert it.

While this definition is limited to one dimension, we can encode the same rela-
tionship in multiple dimensions. Similarly to the way multi-dimensional FTs are
usually implemented, we construct multi-dimensional frames by composing single-
dimensional, orthogonal frames. To each dimension is associated the value’s step
size, number of samples, and unit:

in f ixr 5 :>

data CompositeFrame xs where

F0 : : CompositeFrame ’ [ ]

( :>) : : (F sym , NAT x , FLOAT sn y ex , Proxy ( SIUnit m s kg amp mol k ) )

→ CompositeFrame xs

→ CompositeFrame

( ’ ( sym , NAT x , FLOAT sg y ex , SIUnit m s kg amp mol k ) ’ : xs )

In the one dimensional example, the parameters were phantom type variables;
however, due to a feature of the current type checker, we must have a concrete
representation of the structure of the composite frame.

The dimension of the data within the a discretization must match the dimension
of the frame. We can compute the exact type of the data from the CompositeFrame:

type family Dimension (n : : k ) ( f : : ∗ → ∗ ) ( v : : ∗ ) : : ∗ where

Dimension ’ [ ] f a = a

Dimension (x ’ : xs ) f a = f ( Dimension xs f a )

For example, Dimension ’[x,y] [] (Complex Double) is [[ Complex Double]]. Then the
discretization is defined simply as:

data D i s c r e t i z a t i o n xs vec va l where

D i s c r e t i z a t i o n : : CompositeFrame xs

15
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→ Dimension xs vec va l

→ D i s c r e t i z a t i o n xs vec va l

frameOf : : D i s c r e t i z a t i o n frame vec va l → CompositeFrame frame

frameOf ( D i s c r e t i z a t i o n f ) = f

dataOf : : D i s c r e t i z a t i o n frame vec va l → Dimension frame vec va l

dataOf ( D i s c r e t i z a t i o n d) = d

where xs is the composite frame, vec is the datatype in which the data is contained–
here it is [] , the list type–and val is the underlying value of the data, here it is
Complex Double.

We must declare frames in the same way as before:

instance Frame ”LabFrameX” where

type BaseUnit ”LabFrameX” = Meter

instance Frame ”LabFrameY” where

type BaseUnit ”LabFrameY” = Meter

instance Frame ”LabFrameXT” where

type BaseUnit ”LabFrameXT” = Recip Meter

instance Frame ”LabFrameYT” where

type BaseUnit ”LabFrameYT” = Recip Meter

instance AssertDualFrames ”LabFrameX” ”LabFrameXT”

instance AssertDualFrames ”LabFrameY” ”LabFrameYT”

In order to make it easier to declare discretizations, we include helper functions
and type synonyms for discretizations of dimension up to six. Higher dimensions
are of course permitted, but the user must either declare their own type synonyms
or use the Discretization constructor directly, which will require more typing and
produce more confusing type errors. For example, for two dimensions:

type Disc r e t i za t i on2D dim0 dim1 =

D i s c r e t i z a t i o n [ dim0 , dim1 ]

d i s c r e t i z a t i o n 2 D = D i s c r e t i z a t i o n ( someFrame :> someFrame :> F0)

where someFrame is a polymorphic value representing any frame, whose type will be
specialized when discretizations are declared.

We can now declare some example data:

labFrame : : D i s c r e t i za t i on2D

’ ( ”LabFrameX” , NAT 8 , [ f l o a t | 5e−2 | ] , Meter )

’ ( ”LabFrameY” , NAT 4 , [ f l o a t | 1e−2 | ] , Meter )

[ ]

(Complex Double)

labFrame = Di sc r e t i za t i on2D

[ [ −0 .2 ,−0.26 ,−0.32 ,−0.38 ,−0.44 ,−0.5 ,−0.56 ,−0.63]

, [ 0 . 2 , 0 . 26 , 0 . 32 , 0 . 38 , 0 . 44 , 0 . 5 , 0 . 56 , 0 . 76 ]

, [ 0 . 6 , 0 . 78 , 0 . 96 , 1 . 14 , 1 . 32 , 1 . 5 , 1 . 68 , 1 . 98 ]

, [ 1 . 0 , 1 . 3 , 1 . 6 , 1 . 90 , 2 . 2 , 2 . 5 , 2 . 8 , 2 . 94 ] ]

The FT can be parametrized over the direction:

data Dir = Forward | Inve r s e

data Dire c t i on (d : : Dir ) where

ForwardDir : : D i r e c t i on Forward

Inve r s eDi r : : D i r e c t i on Inve r s e
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which allows a class to compute the dual frame of a given frame based on the
direction and a function to pick the appropriate FFT function from the numeric−FFT

package:

class DualFrameOf d i r a b | d i r a → b

instance AssertDualFrames a b ⇒ DualFrameOf Forward a b

instance AssertDualFrames b a ⇒ DualFrameOf Inve r s e a b

ftFunc : : D i r e c t i on d i r → [Complex Double ] → [Complex Double ]

ftFunc ForwardDir = f f t

ftFunc Inve r s eDi r = i f f t

In order to perform an FFT on an arbitrary dimension of an n-dimensional
matrix, we have to be able to index the dimensions. In order to do this counting,
we store a CompositeFrame which will later be used to determine the correct ‘depth’.

Two classes are required to implement the recursive search of the required frame:

class DirectionFT1 ’ d i r db frame dim frame ’ dim ’

| d i r db frame dim → frame ’ dim ’ where

direct ionFT1 ’ : : D i r e c t i on d i r → F db → CompositeFrame frame

→ CompositeFrame dim →
( CompositeFrame frame ’ , CompositeFrame dim ’ )

and

class DirectionFT1 ’ ’ bool d i r db frame dim frame ’ dim ’

| bool d i r db frame dim → frame ’ dim ’ where

direct ionFT1 ’ ’ : : Proxy bool → Dire c t i on d i r → F db

→ CompositeFrame frame → CompositeFrame dim →
( CompositeFrame frame ’ , CompositeFrame dim ’ )

The class DirectionFT1’’ will decide if the target frame is the same as the frame at
the front of the composite frame and pass the appropriate value to DirectionFT1’.

instance ( bool ∼ ( f r ≡ ? f r ’ ) ,

DirectionFT1 ’ ’ bool d i r f r ’ ( ’ ( f r , n , s , ru ) ’ : xs )

dim (y ’ : ys ) dim ’

) ⇒ DirectionFT1 ’ d i r f r ’ ( ’ ( f r , n , s , ru ) ’ : xs )

dim (y ’ : ys ) dim ’ where

direct ionFT1 ’ = direct ionFT1 ’ ’ ( Proxy : : Proxy bool )

In the case that the target frame and head of the composite frame of the
Discretization are the same, return the current counter and compute the new type of
the frame.

instance ( IsNat numSamples , DualFrameOf d i r frame frameD ,

stepSizeD ∼ FLOAT s0 n0 e0 ,

ToFloat numSamples ∼ numSamplesF ,

stepSizeD ∼ RecipFloat ( numSamplesF ∗ s t e p S i z e )

) ⇒ DirectionFT1 ’ ’ True d i r f r

( ’ ( frame , numSamples , s t e p S i z e , rangeU ) ’ : xs ) dim

( ’ ( frameD , numSamples , stepSizeD , rangeU ) ’ : xs ) dim

where

direct ionFT1 ’ ’ ( :> xs ) n = ( (F , NAT, FLOAT, Proxy ) :> xs , n)

In the case that the target frame and head of the composite frame of the
Discretization are different, recurse on the rest of the composite frame and incre-
ment the counter by one.
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instance ( DirectionFT1 ’ d i r f r xs dim ys dim ’ ,

d ∼ ’ ( frame , numSamples , s t epS i ze , rangeU )

) ⇒ DirectionFT1 ’ ’ False d i r f r

( ’ ( frame , numSamples , s t epS i ze , rangeU ) ’ : xs ) dim

( ’ ( frame , numSamples , s t epS i ze , rangeU ) ’ : ys ) (d ’ :

dim ’ )

where

direct ionFT1 ’ ’ d i r f ( x :> xs ) dim =

l e t ( ys , dim ’ ) = direct ionFT1 ’ d i r f xs dim in ( x :> ys , x :> dim ’ )

In order to actually perform the FFT, we need to know the depth of the target
dimension and the overall dimension of the matrix. Then there is a pattern to
compute the FFT from these values:

D1 x mapˆ0 transpose . fftˆ1 . mapˆ0 transpose

D2 x mapˆ0 transpose . fftˆ2 . mapˆ0 transpose

y mapˆ1 transpose . fftˆ2 . mapˆ1 transpose

D3 x mapˆ0 transpose . fftˆ3 . mapˆ0 transpose

y mapˆ1 transpose . fftˆ3 . mapˆ1 transpose

z mapˆ2 transpose . fftˆ3 . mapˆ2 transpose

where fˆ0 is id, fˆ1 is f, fˆ2 is f . f, etc. This function exponentiation is provided
by dimension, which is fˆn, and dimensionPred, which is fˆn−1.

dimension : : ( Dimension x f v ∼ fv , Functor f ) ⇒
Proxy f → CompositeFrame x → ( v → v ) → fv → fv

dimension F0 f a = f a

dimension p ( :> n) f a = fmap ( dimension p n f ) a

dimensionPred : : ( DimensionPred x f v ∼ fv , Functor f ) ⇒
Proxy f → CompositeFrame x → ( v → v ) → fv → fv

dimensionPred F0 a = a

dimensionPred p ( :> x ) f a = dimension p x f a

In order to actually compute the FFT relative to a frame, that frame must be
in the composite frame. We check this precondition.

type AssertAtomicSubframe x xs = Assert ( IsAtomicSubframe x xs )

( AtomicSubframe x xs )

type family IsAtomicSubframe (x : : Symbol ) ( xs : : [ ( Symbol , k0 , k1 , k2 )

] ) : : Bool where

IsAtomicSubframe x ’ [ ] = False

IsAtomicSubframe x ( ’ ( x , k0 , k1 , k2 ) ’ : xs ) = True

IsAtomicSubframe x ( ’ ( y , k0 , k1 , k2 ) ’ : xs ) = IsAtomicSubframe x xs

The top level FFT class encodes the base case of a one dimensional discretization
and the general case.

class ( AssertAtomicSubframe db frame

) ⇒ DirectionFT1 d i r db frame frame ’

| d i r db frame → frame ’ where

direct ionFT1 : : D i r e c t i on d i r → F db

→ D i s c r e t i z a t i o n frame [ ] (Complex Double)

→ D i s c r e t i z a t i o n frame ’ [ ] (Complex Double)

The general case computes the depth of the target frame, then creates the trans-
position and FFT which apply to the proper dimensions.

At this point we compute the actual function to be applied – fft or ifft from the
direction parameter.

instance

( frame ∼ ( x ’ : xs ) , frame ’ ∼ ( y ’ : ys ) ,
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AssertAtomicSubframe db (x ’ : xs ) ,

DirectionFT1 ’ d i r db frame ’ [ ] frame ’ dim ’ ,

Some extra constraints are required in order to convince the compiler that our
types really do match up. The user is not required to satisfy these, rather, they are
tautologies.

DimensionPred dim ’ [ ] [ [ a ] ] ∼ [ Dimension xs [ ] (Complex Double) ] ,

Dimension ys [ ] (Complex Double) ∼ Dimension xs [ ] (Complex Double) ,

Dimension xs [ ] [Complex Double ] ∼ [ Dimension xs [ ] (Complex Double) ]

) ⇒ DirectionFT1 d i r db (x ’ : xs )

( y ’ : ys ) where

direct ionFT1 d i r db ( D i s c r e t i z a t i o n frame va l ) =

D i s c r e t i z a t i o n frame ’ ( tp . f t . tp $ va l )

where ( frame ’ , ( dim : : CompositeFrame dim ’ ) ) =

direct ionFT1 ’ d i r db frame F0

tp = dimensionPred ( Proxy : : Proxy [ ] )

dim ( transpose : : [ [ a ] ] → [ [ a ] ] )

f t = dimensionPred ( Proxy : : Proxy [ ] )

frame ( ftFunc d i r )

Once the base case exists, we can write the more general case of taking the
FFT with respect to multiple dimensions. This is comprised of recursing over the
type-level list representing the frames and taking the 1D FT with respect to each
one.

class DirectionFT d i r xs frame frame ’ | d i r xs frame → frame ’ where

direct ionFT : : D i r e c t i on d i r

→ List xs

→ D i s c r e t i z a t i o n frame [ ] (Complex Double)

→ D i s c r e t i z a t i o n frame ’ [ ] (Complex Double)

instance DirectionFT d i r ’ [ ] frame frame where . . .

instance ( DirectionFT1 d i r x frame frame ’ ,

DirectionFT d i r xs frame ’ frame ’ ’

) ⇒ DirectionFT d i r (F x ’ : xs ) frame frame ’ ’ where . . .

Once there is a general form of the FT, getting the inverse or forward FT just
requires passing the correct argument to the general function. We define some
functions for convenience:

forwardFT1 = direct ionFT1 ForwardDir

inverseFT1 = direct ionFT1 Inver s eDi r

forwardFT = direct ionFT ForwardDir

inverseFT = direct ionFT Inver s eDi r

Some examples of this approach are included in the appendix.

2.4. Detailed Type-Level Implementation.

2.4.1. Numbers Types. Now, we explain some interesting implementation details
of our type-system. First of all, we present the type-level numbers encoded into
our type-system. There are several encodings of the type-level number including
Peano numbers, binary encoding, and so on. Originally, we used a phantom type
representation of a sequence of decimal digits. With the introduction of type-level
naturals and arithmetic in the latest Haskell compiler (GHC 7.8), much of the code
has been greatly simplified.
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We provide three different type-level number types: NAT, INT, and FLOAT. The
type NAT is a trivial wrapper of the built-in type-level naturals–we implement it so
that naturals can have values, see appendix A.

First, there is a common interface to the different types of numbers, implemented
using classes and open type families.

class Compare a b ( c : : Ordering ) | a b → c where

compare ’ : : a → b → Proxy c

compare ’ = Proxy

class Add a b c | a b → c , b c → a , a c → b where

add : : a → b → c

class Mult a b c | a b → c where

mult : : a → b → c

class ( NonZero a , NonZero b , NonZero c ) ⇒
MultNZ a b c | a b → c , b c → a , a c → b where

multNZ : : a → b → c

...
In addition to Mult, we define an extra multiplying class, MultNZ, with extra

constraints such that functional dependency works in all directions, meaning that
knowing the type of any two elements of the triple (a; b; c) gives the type of third
one.

Type inference would not work if some sizes were allowed to be zero, since any
x satisfies x · 0 = 0.

The numeric types are defined as single constructors with phantom type param-
eters:

data NAT (n : : Nat ) = NAT

data Sign = Neg | Pos

data INT ( s : : Sign ) (n : : Nat ) = INT

data E K = E Nat | E Nat

data FLOAT ( s : : Sign ) (n : : Nat ) (exp : : E K) = FLOAT

Note that the type parameters have specific kind signatures, which makes writing
a nonsensical type like INT :: INT Char Float is a type error, see appendix A.

Also note that the type E K is the same as INT. While this causes some code
duplication, one goal when writing the definitions of number datatypes was to
produce easily readable types when the compiler prints them.

The type FLOAT represents arbitrary precision floating point decimal numbers.
The numbers are represented as sign ∗ base ∗ 10exp; E K is the kind of exponents
and can be a negative exponent, E n, or a positive exponent, E n.

If the user declares their numbers using Template Haskell (see appendix A) or
uses the ‘smart constructor’ NFLOAT:

type family NFLOAT ( s : : Sign ) (n : : Nat ) (exp : : E K) where

NFLOAT s n exp = Normal izeFloat (FLOAT s n exp)

the resulting number is guaranteed to be in normal form. Otherwise, the user must
assure that their declared numbers are indeed in normal form.
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Normalizing floats consists of four steps: the base is converted to a list of digits,
trailing zeroes are dropped, the list is combined back into a single number, and the
exponent is adjusted by the appropriate number of digits.

The most important part of this process is converting the base, x, to a list of
digits. We count the number of digits in the base, d:

type NumDigits num = NumDigits ’ 1 0 False (num + 1)

type family NumDigits ’ pow powCount bool num where

NumDigits ’ pow powCount True num = powCount

NumDigits ’ pow powCount b num =

NumDigits ’ (pow∗10) (powCount+1) (num ≤ ? (pow ∗ 10) ) num

and then successively add 10n−1, counting how many exponents were added:

type family D i g i t S p l i t ’ ’ ’ num dig pow where

D i g i t S p l i t ’ ’ ’ num dig pow =

D i g i t S p l i t ’ ’ ’ ’ num dig pow ( ( ( ( d ig + 1) ∗ (10 ˆ (pow − 1) ) ) >? num) )

type family D i g i t S p l i t ’ ’ ’ ’ num dig pow b where

D i g i t S p l i t ’ ’ ’ ’ num dig pow False = D i g i t S p l i t ’ ’ ’ num ( dig + 1) pow

until we have exceeded x. At this point, the count, c, is the first digit of x while
x− c ∗ 10n−1 is the rest of the digits. We recurse on the remaining value.

D i g i t S p l i t ’ ’ ’ ’ num dig pow True =

dig ’ : D i g i t S p l i t ’ ’ (num − ( d ig ∗ (10 ˆ (pow − 1) ) ) ) (pow − 1)

We perform a bounds check for numbers with only 1 digit, and define the special
case Digits 0 = [] :

type D i g i t S p l i t num = D i g i t S p l i t ’ num (num ≤ ? 9)

type family D i g i t S p l i t ’ num bool where

D i g i t S p l i t ’ num True = ’ [num]

D i g i t S p l i t ’ num False = D i g i t S p l i t ’ ’ num ( NumDigits num)

type family D i g i t S p l i t ’ ’ num pow where

D i g i t S p l i t ’ ’ num 0 = ’ [ ]

D i g i t S p l i t ’ ’ num pow = D i g i t S p l i t ’ ’ ’ num 0 pow

2.4.2. Arithmetic. We will omit details regarding the implementation of arithmetic
for NAT and INT since they rely on the built-in type functions for arithmetic, with
type-level naturals, in a similar way to the implementation of FLOAT.

Due to the function dependency on the Add class, we are required by the type-
checker to supply a proof for c = a+ b, a = c− b, and b = c− a, which allows the
typechecker to determine any one type from the other two:

instance

( a ∼ (FLOAT s0 n0 e0 ) , b ∼ (FLOAT s1 n1 e1 ) , c ∼ (FLOAT s2 n2 e2 ) ,

Normal izeFloat ( AddFloat a b) ∼ c ,

Normal izeFloat ( AddFloat c ( NegateFloat b) ) ∼ a ,

Normal izeFloat ( AddFloat c ( NegateFloat a ) ) ∼ b

) ⇒ Add (FLOAT s0 n0 e0 ) (FLOAT s1 n1 e1 ) (FLOAT s2 n2 e2 )

where add = FLOAT

Addition of two summands is computed in the usual way: we compute the
difference between the exponents, multiply the smaller base by 10|e0−e1|, and add
the bases:
type family AddFloat a b where

AddFloat (FLOAT s0 n0 e0 ) (FLOAT s1 n1 e1 ) =

AddFloat ’ ( CompareInt ( ExpToInt e0 ) ( ExpToInt e1 ) )

( Subtract Int ( ExpToInt e0 ) ( ExpToInt e1 ) )

(INT s0 n0 ) ( ExpToInt e0 )
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(INT s1 n1 ) ( ExpToInt e1 )

type family AddFloat ’ cmp d i f f am ae bm be where

AddFloat ’ GT d i f f am ae bm be =

PowFloat ( AddInt ( MultInt am ( ExpInt (INT Pos 10) d i f f ) ) bm)

( IntToExp be )

AddFloat ’ LT d i f f am ae bm be =

PowFloat ( AddInt am ( MultInt bm ( ExpInt (INT Pos 10) ( NegateInt

d i f f ) ) ) ) ( IntToExp ae )

where ExpToInt and IntToExp are type functions which convert between E n/E n and
INT. Some patterns for the above functions are omitted; these patterns handle
special cases such as zero, one, summands with the same exponent, summands with
the same base, and so on. Having these extra patterns optimizes some common
cases, speeding computation slightly.

Multiplication is also done the usual way:

type family MultFloat a b where

MultFloat (FLOAT s0 n0 e0 ) (FLOAT s1 n1 e1 ) =

Normal izeFloat (FLOAT ( MultSign ’ s0 s1 )

( n0∗n1 )

( IntToExp ( ExpToInt e0 ‘ AddInt ‘ ExpToInt e1 ) ) )

Multiplication of non-zero multiplicands is more interesting, as it requires float-
ing point division to prove to the compiler that the functional dependencies are
satisfied - namely, that a ∗ b = c, a = c

b , and b = c
a .

Due to technical limitations, floating point division would take a prohibitively
long time since it requires integer division, which is not present for built-in type-
level naturals. Integer division with remainder requires repeatedly subtracting the
divisor, checking after each subtraction that the result isn’t less than the divisor,
and increasing an accumulator for the quotient. This is at least three type family
applications and in practice more likely five. Each type family application has
an associated cost. Even for small numbers divisions, like 1000/2, this requires
at least 2500 type family applications, which is quite expensive, and will overflow
without increasing the −ftype−function−depth compiler option, which is the maximum
recursion depth for type families.

We can work around this, employing a divisions of the form 1/a. However, it
would be preferrable to have division with remainder built into the compiler; this
would make floating point division feasible.

instance

( a ∼ (FLOAT s0 n0 e0 ) , b ∼ (FLOAT s1 n1 e1 ) , c ∼ (FLOAT s2 n2 e2 ) ,

NonZero a , NonZero b , NonZero c ,

MultFloat a b ∼ c ,

MultFloat c ( RecipFloat b) ∼ a ,

MultFloat c ( RecipFloat a ) ∼ b

) ⇒ MultNZ (FLOAT s0 n0 e0 ) (FLOAT s1 n1 e1 ) (FLOAT s2 n2 e2 )

where multNZ = FLOAT

The consequence of this is that some multiplications will fail because an inter-
mediate number may not be expressible as a decimal–for example, 2 ∗ 3 requires
computing 6 ∗ (1/3), which is expressible as a decimal but the intermediate value
1/3 is not.
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3. Error handling

One of our motivations was to write code which, when used incorrectly, would
produce descriptive errors from which a person with little knowledge of the imple-
mentation could deduce what they did wrong. Unfortunately, in many cases the
error message produced would not be very helpful.

For example, the following

class (Frame a , Frame b , BaseUnit a : ∗ : BaseUnit b ≡ U n i t l e s s

) ⇒ AssertDualFrames a b | a → b , b → a

instance Frame (F ”BadFrame0” ) where

type BaseUnit (F ”BadFrame0” ) = U n i t l e s s

instance Frame (F ”BadFrame1” ) where

type BaseUnit (F ”BadFrame1” ) = Meter

instance AssertDualFrames (F ”BadFrame1” ) (F ”BadFrame0” ) where

would produce

. . . Could not match type 1 with 0 . . .

It is not clear where these types appear or what the problem is conceptually.
We addressed this by creating a system which forces the compiler to print better

error messages. First we define some primitive types and classes:

type family I f ( a : : Bool ) (b : : k ) ( c : : k ) : : k where

I f True a b = a

I f False a b = b

Always is the constraint which is always satisfied:

class Always

instance Always

Never is the constraint which is never satisfied:

data T

type family Never ’ t where

Never ’ T = Always

class Never

instance Never ’ ( ) ⇒ Never

No other instance can ever be declared for never and the constraint Never’ () will
not be satisfied.

However, seeing Never’ () will likely not be very helpful either, so we declare
similar type families for each individual case. The name of the type family reflects
the error made:

type family AtomicSubframe (x : : k ) ( xs : : k0 ) where

AtomicSubframe T T = Never

type family DualUnits ( a : : k0 ) (b : : k1 ) where

DualUnits T T = Never

type family Less Than ( a : : k0 ) (b : : k1 ) where

Less Than T T = Never

type family Greater Than ( a : : k0 ) (b : : k1 ) where

Greater Than T T = Never
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The data type T is not exported, so a user can never pass it to any of the above
type functions and the constraint can never be satisfied. This is necessary because
closed type families must have at least one clause.

The type Assert is a useful synonym: if the condition is true, Assert is satisfied.
Otherwise it is equal to err, a constraint which is never satisfied.

type Assert bool e r r = I f bool Always e r r

Now we redefine our original example:

type AssertDualUnits a b = Assert ( a : ∗ : b ≡ ? U n i t l e s s ) ( DualUnits a b)

class (Frame a , Frame b , AssertDualUnits ( BaseUnit a ) ( BaseUnit b)

) ⇒ AssertDualFrames a b | a → b , b → a

instance AssertDualFrames (F ”BadFrame1” ) (F ”BadFrame0” ) where

which now produces the error:

No instance f o r ( DualUnits

( SIUnit ( ’M 1) ( ’ S 0) ( ’Kg 0) ( ’A 0) ( ’ Mol 0) ( ’K 0) )

( SIUnit ( ’M 0) ( ’ S 0) ( ’Kg 0) ( ’A 0) ( ’ Mol 0) ( ’K 0) ) )

The type error now indicates what types have caused the error. It also tells the
user that conceptually they have declared dual frames which physically should not
be dual, since their units are not dual.

4. Conclusion

To be useful, a type system for mathematical models should:

(1) use syntax compatible with the usual notation used by domain experts,
(2) detect significant errors which do occur in practice, and
(3) produce error messages which domain experts will understand.

We think all domain experts would agree that implementing computation involv-
ing Fourier Transforms is error prone and some errors can be difficult to detect,
but dangerous, producing downstream errors such as to flipped images. Using our
encoding of physical properties, all known erroneous applications of the Discrete
Fourier Transform are detected at compile time and, moreover, many can be com-
pletely eliminated by letting the compiler use type inferencing to derive properties.

It would be impossible to provide a system entirely consistent with the usual
notation of experts in this area because applied mathematics does not have consis-
tent notation. Using an embedded language–even embedded in Haskell, which is
among the fittest to the purpose–imposes limitations on the syntax, but we think we
have made intelligible choices. Also producing intelligible error messages is more
challenging; we admit that some error messages will require additional explana-
tion for domain experts but we feel that the strengths of the system outweigh this
shortcoming.

If we could ask for further support to increase the utility of embedded DSL
offering strong typing, we would ask for additional arithmetical support; division
being helpful in our case. Also, an easier way to intercept types and type errors
to provide hints at their interpretation, or even suggestions for fixing errors, would
make it practical to provide increasing levels of type safety in embedded DSLs.

Given the tools we do have, there remains a lot of work to complete our vi-
sion of a system of types capable of capturing modelling errors in inverse imaging
problems, even just MRI problems. Some work is routine, but much of it requires
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the construction of routine concepts from first principles in order to formalize them
properly. When we started this work, in addition to the obvious problems with FTs,
we tried to derive common regularizers from first principles in order to formalize
them in our type system. While we could interpret some regularizers in terms of
probability Moghadas [2012], something we need to understand better before en-
coding in our type system, most are still a mystery and whether errors in modelling
and implementation can be avoided by type checking is an open problem. Given
the importance of regularization in solving challenging inverse problems, it is an
important one.

In conclusion, we are encouraged by our initial success to continue the process of
formalizing the concepts and methods mathematical modelling. In a next step, we
will demonstrate the advantages of using the types we have constructed to produce
sound specifications for a symbolic code generation layer, which will lead to medical
imaging software with provable correctness properties.
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Appendix A. Haskell Extensions

We have tried to minimize the use of Haskell extensions, partly for portability,
but mostly to reduce the learning requirement for a domain expert. Initially, we
only used functional dependencies; later found it impractical to do testing of type-
level programming without TemplateHaskell, which we also use to improve the input
of type-level numbers. In reimplementing our system to take advantage of built-
in type-level naturals, we found it much easier to use type families rather than
functional dependencies.

In this appendix we describe these features so someone with a basic knowledge
of Haskell will be able to follow our code, especially in cases where the use of
templates makes numerical type input look different from numerical output from
the compiler.

A.1. Template Haskell. In order to make entering type-level numbers more nat-
ural, we use two extensions, called TemplateHaskell and QuasiQuotes. The first allows
the execution of Haskell code at compile time in order to generate Haskell code
included in the module. For example, in order to create a number:

> : t $ ( mkFloatExp ” 3 .14 ” )

$ ( mkFloatExp ” 3 .14 ” ) : : FLOAT Pos 314 ( E 2)

QuasiQuotes enables a new type of syntax called quasi-quotation. With this syntax,
one can write:

> : t [ f l o a t | 3 .14 | ]

[ f l o a t | 3 .14 | ] : : FLOAT Pos 314 ( E 2)

We also define the Template Haskell functions randomNat, randomInt, and randomFloat,
which generate random numbers at compile time. We use these functions later for
generating test cases.

A.2. Kinds. Just as types provide some assurance of correctness for data-level
computations, kinds provide some assurance of correctness for type-level compu-
tations. There are several Haskell extensions which give the ability to work with
kinds. There are several built in kinds:

∗ All types which are inhabited (i.e., have values) have this kind, read OpenKind.

∗ → ∗ Functions have this kind.
Nat Built in type-level naturals have kind Nat.

Symbol Type-level symbols, used as labels, have kind Symbol

Constraint Class constraints have kind Constraint.
[k] The kind of lists of types is [k].

The extension DataKinds gives the programmer the ability to define their own
kinds. It does not introduce new syntax, but rather reuses the syntax of datatype
declarations. When DataKinds is enabled, a declaration of the form:

data Bool = True | False

implicitly becomes a declaration of the form:

kind Bool = ’True | ’ False

The types ’True and ’False have kind Bool.
The leading quote is used to distinguish the kind A from the type A in situations

where it would be ambiguous. If there is no ambiguity, it can be omitted.
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Kinds can be polymorphic in the same way as types. PolyKinds and KindSignatures

enable polymorphic kinds. Kind signatures can then be specified using the same
syntax as type signatures:

data INT ( s : : Sign ) (n : : Nat ) = INT

Type-level symbols provide a convenient way of declaring new types for use as
labels without having to declare data types and list kinds are parametrized over
kind, in analogy with data level lists.

A.3. Functional Dependencies. The Haskell 2010 standard allows for type classes
with exactly one type parameter. The MultiParamTypeClasses extension relaxes this
requirement, allowing for any number of parameters. When combined with
FunctionalDependencies, classes of the form:

class AssertDualFrames a b | a → b , b → a

can now be written. The functional dependency a → b indicates that the type b

can be uniquely determined from the type a. In other words, when attempting to
satisfy the constraint AssertDualFrames X a, where X is a type and a a type variable,
the compiler will know that there is only one valid type for a and it will know what
that type is.

If the compiler determines that an instance declaration does not satisfy a func-
tional dependency it will reject the instance.

A.4. Type Families. Type families are the main workhorse of most of our code.
They implement almost all of the computation done with types. Type families come
in two flavours: open and closed. Open type families behave much like classes in
that different type instances cannot be overlapping. While open type families are
sometimes useful, multi-parameter type classes with functional dependencies are
often more powerful.

Closed type families, on the other hand, provide a very powerful feature: pattern
matching on types. This means that different patterns in closed families may be
overlapping and they will be matched in sequence, much like pattern matching on
data:

type family Equals a b where

Equals a a = True

Equals a b = False

Unlike pattern matching on data, two variables can have the same name and
such a pattern will only match when both variables are known to be the same type.

Appendix B. Implementation of the FT without type-level naturals

We include, in the web-accessible material, implementations of the typed FT
developed before built-in type-level naturals were available. While the advantages
of built-in naturals are overwhelming, several aspects of the original implementation
will be of interest to some readers. To facilitate comparisons, concepts are presented
in the same order as in the body of the paper, although many elements are omitted
in this appendix and only available in the web-accessible material; more details
of the fixed-point implementations can be found in Moghadas [2012]. There are
implementations with fixed-point and rational numbers, and arbitrary-precision
floating-point numbers.
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B.1. Discretizations and FTs. Discretizations change only in the way in which
numbers are recorded. Numbers are necessarily encoded as compositions of prim-
itive types. For the implementation with fixed-point numbers, fractional numbers
are represented via fractions rather than decimal fractions–binary fractions were
not considered for readability reasons.

meas1 : : D i s c r e t i za t i on1D LabFrame

(NumSamples ( SIZE3 D0 D0 D4) )

( StepSizeNum ( SIZE3 D0 D0 D3) )

( StepSizeDenom ( SIZE3 D5 D0 D0) )

(U. Meter ( ) )

[Complex Double ]

In some cases, fractions such as 1/3 may be more convenient, and lead to more
readable code, and type inferencing across the FT will find representable sampling
patterns in more cases, such as:

> : type ( f t meas1 )

( f t meas1 )

: : D i s c r e t i za t i on1D

LabFrameT

(NumSamples ( SIZE3 D0 D0 D4) )

( StepSizeNum ( SIZE3 D5 D0 D0) )

( StepSizeDenom ( SIZE3 D0 D1 D2) )

(U. Meter ( ) )

[Complex Double ]

As a side effect of the overall implementation, some type errors are more specific.
For example, in the following case the type error flags the incomparability of the
frames rather than flagging the higher-level discretizations:

> : type ( f t meas1 ) U.+ meas1

> Couldn ’ t match type ‘LabFrameT ’ with ‘LabFrame ’

When us ing f u n c t i o n a l dependenc ies to combine

AssertDualFrames LabFrame LabFrameT ,

a r i s i n g from the dependency ‘ a → b ’

in the instance d e c l a r a t i o n at Prac t i c e . l h s : 9 6 : 1 0

AssertDualFrames LabFrame LabFrame ,

a r i s i n g from a use of ‘ f t ’ at <i n t e r a c t i v e>:1:1−2

In the f i r s t argument of ‘ (U.+) ’ , namely ‘ f t meas1 ’

In the expr e s s i on : f t meas1 U.+ meas1

Note that ghc also flags errors associated with sampling sizes, but the important
error above appears first.

On the other hand, when sizes do not match the error is flagged at too fine
a scale, identifying the individual digit which doesn’t match, as below where two
discretizations:

canalSample1 : : D i s c r e t i za t i on1D CanalFrame

(NumSamples ( SIZE3 D0 D1 D2) )

( StepSizeNum ( SIZE3 D0 D0 D1) )

( StepSizeDenom ( SIZE3 D1 D0 D0) )

(U. Meter ( ) )

[ Double ]

canalSample1 =

Di s c r e t i za t i on1D [ 1 , 1 . 2 , 1 . 3 , 1 . 1 2 , 1 . 2 3 , 1 . 1 2 , 1 . 1 5 , 1 . 2 5 , 1 . 1 8 , 1 . 2 0 , 1 . 2 4 , 1 . 2 8 ]

canalSample2 : : D i s c r e t i za t i on1D CanalFrame

(NumSamples ( SIZE3 D0 D1 D2) )

( StepSizeNum ( SIZE3 D0 D0 D1) )

( StepSizeDenom ( SIZE3 D2 D0 D0) )
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(U. Meter ( ) )

[ Double ]

canalSample2 =

Di s c r e t i za t i on1D [ 1 , 1 . 2 1 , 1 . 2 , 1 . 4 2 , 1 . 3 , 1 . 3 2 , 1 . 1 2 , 1 . 2 5 , 1 . 2 3 , 1 . 2 0 , 1 . 1 2 , 1 . 2 8 ]

are summed:

> canalSample1 U.+ canalSample2

causing the error:

Couldn ’ t match expected type ‘D1 ’ with ac tua l type ‘D2 ’

Expected type : D i s c r e t i za t i on1D

CanalFrame

(NumSamples ( SIZE3 D0 D1 D2) )

( StepSizeNum ( SIZE3 D0 D0 D1) )

( StepSizeDenom ( SIZE3 D1 D0 D0) )

(U. Meter ( ) )

[ Double ]

Actual type : D i s c r e t i za t i on1D

CanalFrame

(NumSamples ( SIZE3 D0 D1 D2) )

( StepSizeNum ( SIZE3 D0 D0 D1) )

( StepSizeDenom ( SIZE3 D2 D0 D0) )

(U. Meter ( ) )

[ Double ]

In the second argument of ‘ (U.+) ’ , namely ‘ canalSample2 ’

In the expr e s s i on : canalSample1 U.+ canalSample2

The full error message is still quite readable and is unlikely to cause confusion.
The FT is defined in this system as

class FT a b | a → b , b → a where

f t : : a → b

invFt : : b → a

instance ( S i z e numSamp, U. Unit rangeU , AssertDualFrames frame1 frame2

, MultDNonZero ( stepSizeNum1 , stepSizeDenom1 )

(numSamp, SIZE3 D0 D0 D1)

( stepSizeDenom2 , stepSizeNum2 ) )

⇒ FT ( Di s c r e t i za t i on1D frame1

(NumSamples numSamp)

( StepSizeNum stepSizeNum1 )

( StepSizeDenom stepSizeDenom1 )

rangeU [Complex Double ] )

( D i s c r e t i za t i on1D frame2

(NumSamples numSamp)

( StepSizeNum stepSizeNum2 )

( StepSizeDenom stepSizeDenom2 )

rangeU [Complex Double ] ) where

f t ( D i s c r e t i za t i on1D x) = ( Di s c r e t i za t i on1D $ f f t x )

invFt ( D i s c r e t i za t i on1D x) = ( Di s c r e t i za t i on1D $ i f f t x )

(10)
stepSizeNum1

stepSizeDenom1
× numSamp

SIZE3 D0 D0 D1
=

stepSizeDenom2

stepSizeNum2

Which is the same as:

(11) stepSize1 × stepSize2 × numSamp = 1

This corresponds to equation (9).
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B.2. Detailed Type-Level Implementation without Naturals. In this sec-
tion we explain some interesting implementation details of our type-system. First
of all, we present the type-level numbers encoded into our type-system. There are
several encodings of the type-level number including Peano numbers, binary encod-
ing, and so on. We used a phantom type representation of a sequence of decimal
digits because decimal encoding makes error messages more comprehensible. Since
we are using the decimal notation, we need the types for all ten digits:

data D0

data D1

data D2

. . .

data D9

There is a class Digit of which all 10 type-level digits are instances. It has a method
to convert a type-level single digit to its corresponding data level number.

class Dig i t a where

d i g i t : : a → Int

We defined a phantom data type, SIZE, to implement a 10-digit (fixed precision)
type-level number. We also implemented a smaller version, SIZE3, which is a 3-digit
type level number to make the examples shorter. We made our 10-digit and 3-digits
numbers an instance of class Size, which has a method toInt to convert a type-level
number into the corresponding data level (i.e. run-time) number.

data SIZE d9 d8 d7 d6 d5 d4 d3 d2 d1 d0

data SIZE3 d2 d1 d0

class S i z e a where

to In t : : a → Int

For 10-digit numbers we used the same method to make it an instance of the class
Size.

instance fora l l d2 d1 d0 . ( D ig i t d2 , D ig i t d1 , D ig i t d0 )

⇒ S i z e ( SIZE3 d2 d1 d0 ) where

to In t = d i g i t d0 + 10 ∗ ( d i g i t d1 ) + 100 ∗ ( d i g i t d2 )

where

d0 = undefined : : d0

d1 = undefined : : d1

d2 = undefined : : d2

In the instance definition, d0, d1, and d3 are both types and values. The values are
needed by the toInt function, although the value is not inspected, which is why it is
acceptable to define them as undefined.

Then we implemented the required arithmetic operations on our type-level num-
ber. There is a class called Times for multiplying two single digits with each other.

class Times da db high low | da db → high , da db → low where

Then we specified all of its instances w.r.t different combinations of any two digits.
For example:

instance Times D0 D0 D0 D0 where
...
instance Times D1 D0 D0 D0 where

instance Times D1 D1 D0 D1 where
...
instance Times D9 D1 D0 D9 where
... 31
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instance Times D9 D9 D8 D1 where

For multiplying two type-level numbers, e.g., two numbers of type Size, we needed to
implement the type-level addition of 3 to 20 digits. Here, we present such additional
classes for adding 3 digit numbers. Other classes have the similar implementations:

class Add3 a1 a2 a3 sh s l | a1 a2 a3 → sh , a1 a2 a3 → s l where

instance (Add2 a1 a2 a1a2h a1a2l , Add2 a1a2 l a3 a1a2la3h a1a2a3l ,

Add2 a1a2h a1a2la3h D0 a1a2a3h ) ⇒ Add3 a1 a2 a3 a1a2a3h a1a2a3l

where

We used multi-parameter type classes together with functional dependencies so that
by knowing all input digits (a1 a2 a3 a4) we can infer the type of both the low and
the high digits of the result.

To present the implementation of a class for multiplying two type-level numbers (of
type SIZE), we present the smaller version that is responsible for multiplying two
SIZE3 numbers, which captures all of the important ideas. We start by sketching
the multiplication of 3 digits by 3 digits to show the required constraints for their
multiplication class.

f2 f1 f0

e2 e1 e0

– – – – [e0 ∗ f0]h [e0 ∗ f0]l
– – – [e0 ∗ f1]h [e0 ∗ f1]l –
– – [e0 ∗ f2]h [e0 ∗ f2]l –
– – – [e1 ∗ f0]h [e1 ∗ f0]l –
– – [e1 ∗ f1]h [e1 ∗ f1]l – –
– [e1 ∗ f2]h [e1 ∗ f2]l – – –
– – [e2 ∗ f0]h [e2 ∗ f0]l – –
– [e2 ∗ f1]h [e2 ∗ f1]l – – –

[e2 ∗ f2]h [e2 ∗ f2]l – – – –
g2 g1 g0

For the first digit of result ‘g0’, there is just one term to be counted, which is the
low digit of ‘e0×f0’, and this can be implemented using the Times class. The second
digit of result ‘g1’ is obtained by adding the high digit of ‘e0 × f0’, the low digit of
‘e0 × f1’, and the low digit of ‘e1 × f0’ which can be implemented using the ’Add3’
class. The third digit is the result of adding five different known terms which is
implemented using Add5 class. Continuing in this way, we arrive at the definition:

class MultD3 f2 f1 f0 e2 e1 e0 g2 g1 g0 |
f 2 f 1 f0 e2 e1 e0 → g2 ,

f 2 f1 f0 e2 e1 e0 → g1 ,

f 2 f1 f0 e2 e1 e0 → g0 where

instance ( Times f0 e0 p00h p00l , Times f1 e0 p10h p10l ,

Times f2 e0 D0 p20l , Times f0 e1 p01h p01l ,

Times f1 e1 D0 p11l , Times f2 e1 D0 D0 ,

Times f0 e2 D0 p02l , Times f1 e2 D0 D0 ,

Times f2 e2 D0 D0 ,

Add3 p00h p10l p01l c1h c1l ,

Add5 p20l p01h p11l p02l c1h D0 c 2 l )

⇒ MultD3 f2 f1 f0 e2 e1 e0 c 2 l c 1 l p00l where

We implemented arithmetic for three- and ten-digit numbers in this way and defined
a MultD class such that each size-specific multiply would be an instance of this class.

In addition, we defined an special case:
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class MultDNonZero f e g | f e → g , f g → e , e g → f where

instance ( NonZero f , NonZero e , NonZero g , MultD e f g ) ⇒
MultDNonZero e f g where

to allow type inferencing to work, for example, across FTs.
Type-level numbers are needed for both sizes and dimensions, but dimensions

are never big numbers so it makes sense to create small numbers using phantom
data types to represent different powers for each basic unit. We created a data type
for each required basic unit w.r.t the different powers (we do not need all basic units
for medical imaging purpose). For example:

data M0 −− means the dimension leng th to the power of 0 ( dimensionless )

data M1 −− means the dimension leng th to the power of 1

data M2

. . .

data M 1 −− means the dimension leng th to the power of −1
data M 2

For every basic unit, we needed a class with a method to convert type-level dimen-
sional numbers–from -5 to 5 is enough for our application–into its corresponding
data level number. For example, for length we have a class called UnitM:

class UnitM a where

toIntM : : a → Int

instance UnitM M0 where

toIntM = 0

instance UnitM M1 where

toIntM = 1

. . .

instance UnitM M 5 where

toIntM = −5

There is also another class for multiplying two powers of the same basic dimensions,
which is responsible for simplifying the resulting dimensions by adding their powers.

class AddDim a b c | a b → c , a c → b , b c → a where

We added all of its reasonable instances to our type-system. For example:

. . .

instance AddDim M 4 M3 M 1 where

. . .

The above instance means that m−4 ×m3 is equal to m−1.

These powers of fundamental units are combined into an SI unit:

data SIUnit u1 u2 u3 u4 u5 va l = SIUnit va l

Type synonyms are defined for some composite units:

type U n i t l e s s va l = SIUnit M0 Kg0 S0 A0 Mol0 va l

type Meter va l = SIUnit M1 Kg0 S0 A0 Mol0 va l

type PerM val = SIUnit M 1 Kg0 S0 A0 Mol0 va l

type MPerS va l = SIUnit M1 Kg0 S 1 A0 Mol0 va l

. . .

We implemented a class for all possible units, Unit, which accepts only composite
units that have the basic units in a specific order.

class Unit a where

instance (UnitM m, Show m, UnitKg kg , Show kg , UnitS s , Show s ,

UnitA a , Show a , UnitMol mol , Show mol , Show va l )

⇒ Unit ( SIUnit m kg s a mol va l ) where
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We also needed to implement the required arithmetic operation with respect to
the physical quantities. Such operations are more restricted than their default
implementation in the Prelude. For example, adding or subtracting two physical
quantities only makes sense when both have the same dimension. We implemented
the Mult class with a ‘(∗)’ method and the Add class with ‘(+)’, negate, and ‘(−)’
methods:
class Mult a b c | a b → c , a c → b , b c → a where

(∗ ) : : a → b → c

class Add a where

(+) : : a → a → a

negate : : a → a

(−) : : a → a → a

Then we made the SIUnit data an instance of those classes:
instance (UnitM u1 , UnitKg u2 , UnitS u3 , UnitA u4 , UnitMol u5 , Add va l )

⇒ Add ( SIUnit u1 u2 u3 u4 u5 va l ) where

( SIUnit x ) + ( SIUnit y ) = SIUnit ( x + y)

negate ( SIUnit x ) = SIUnit ( negate x )

( SIUnit x ) − ( SIUnit y ) = SIUnit ( x − y )

Which states that addition and subtraction are only valid when both quantities
have the same dimension.
instance (AddDim u1 v1 w1 , AddDim u2 v2 w2 , AddDim u3 v3 w3 ,

AddDim u4 v4 w4 , AddDim u5 v5 w5 , Mult va l va l va l )

⇒ Mult ( SIUnit u1 u2 u3 u4 u5 va l )

( SIUnit v1 v2 v3 v4 v5 va l )

( SIUnit w1 w2 w3 w4 w5 va l ) where

( SIUnit a ) ∗ ( SIUnit b) = SIUnit ( a ∗ b)

For multiplication, the power of each basic unit in the first argument is added
to the power of the same basic unit in the second argument to determine the
physical dimension of the result. The functional dependency in all directions makes
it possible to infer the physical unit of any argument by knowing the two others.
At this state, we can show an example using the physical dimensions in our type-
system. Suppose we have three physical quantities representing distance, time and
velocity defined as:

d i s t ance = SIUnit 2 : : Meter Double

time = SIUnit 10 : : Second Double

v e l o c i t y = SIUnit 0 .2 : : MPerS Double

If we multiply velocity and time, the resulting quantity correctly has the dimension
distance:
> v e l o c i t y ∗ time

2 .0 m

but if we try to add time with distance it will cause a compile time error:

> time + d i s t ance

Couldn ’ t match expected type ‘M0’ with ac tua l type ‘M1’

Expected type : Second Double

Actual type : Meter Double

In the second argument of ‘ (+) ’ , namely ‘ d i s tance ’

In the expr e s s i on : time + d i s t ance

In the error message, it explicitly mentions that the expected type is Second Double

and the actual type is Meter Double which is easy for the user to understand.
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In addition to fixed-point and rational numbers, we also include an implemen-
tation of arbitrary-precision floating point numbers and systems of units built on
top of them. As with the implementation in the body of this paper, the floating
point implementation has many advantages over a fixed-point system, but it does
have the disadvantage of not being closed under division.

Appendix C. Testing type-level numbers

The use of type-level numbers in order to ensure correctness in computation is
only useful if the arithmetic of the type-level numbers themselves is correct. Here
we describe tests conducted in order to assure the correctness of the type-level
numbers.

C.1. Fixed-width numbers. Two standard lengths of fixed-width numbers are
used: width-3 and width-10. Since there are a finite number of representable num-
bers in these systems, addition and multiplication can produce only a finite number
of numbers. It is then possible to test all multiplications and additions. For width-3
this may be feasible; there are 1000 different possibilities for both the summand-
s/multiplicands, so a mere million tests are required for each operation (further
limited by overflow). However, due to the slow speed of the compiler when type
checking arithmetic, even these million cases are too many to test individually. For
width-10, this number is is 1020; it is impossible to verify so many cases individ-
ually. Therefore, we decide to check the validity of multiplication on a series of
random numbers.

The main function used is defined as follows:

testAsync nCases nProcs = do

putStrLn ” Writing source f i l e s . . . ”

writeRand nCases nProcs

putStrLn ”Compiling . . . ”

h ← mapM compi l eF i l e [ 0 . . ( nProcs − 1) ]

mapM waitForProcess h

mapM

(λx → readProcess ( ” t e s t \\ t e s t c a s e ” ++ alpha x ++ ” . exe ” ) [ ] [ ] >>=

putStrLn . (++) ( ”λ ‘ nRunning t e s t case ” ++ alpha x ++ ”λ ‘ n” )

) [ 0 . . ( nProcs − 1) ]

It will produce nProcs source files, each containing nCases random test cases. It will
then call compileFile on each source file which will compile the source files concur-
rently. After compiling is finished, each test file will be called.
The function generates files which contain:

{−# LANGUAGE ScopedTypeVariables #−}
module Main where

import SizeTypes

f : : f o ra l l e f g . ( MultDNonZero e f g , NonZero f , NonZero e , NonZero g ,

MultD e f g , S i z e e , S i z e f , S i z e g ) ⇒ ( e , f , Integer ) → IO Bool

f ( a , b , s )

| s ≡ g = putStr ”” >> return True

| otherwise = putStrLn ( ”Mult o f ” ++ show ( to In t a ) ++ ” and ”

++ show ( to In t b) ++ ” f a i l e d ” )

>> return False

where g = to In t (u : : g )

u = undefined

f is a function which takes two type-level numbers and the data-level representation
of the result of their multiplication. It then multiplies them on the type level and
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compares this to the multiplication computed on the data level.
Each module contains a main function which contains the randomly generated num-
bers. The following was produced with testAsync 10 2 :

main =

putStrLn ” Test ing type−l e v e l m u l t i p l i c a t i o n o f 10 p a i r s o f numbers . ”

>> ( (λb → i f and b then putStr ” Al l mults passed ” else putStr ”” )

=<< sequence

[

f (u : : SIZE D0 D0 D0 D0 D0 D0 D6 D3 D7 D7 ,

u : : SIZE D0 D0 D0 D0 D2 D0 D0 D6 D9 D3 ,

1279819261) ,

. . .

f (u : : SIZE D0 D0 D0 D0 D0 D1 D6 D7 D6 D1 ,

u : : SIZE D0 D0 D0 D0 D0 D4 D0 D6 D0 D0 ,

680496600)

] )

The main function will call f on every set of numbers and verify that every check
returns True.

As an example:

>testAsync 10 2

Writing source f i l e s . . .

Compiling . . .

. . .

Running t e s t case A

Test ing type−l e v e l m u l t i p l i c a t i o n of 10 p a i r s of numbers . g

Al l mults passed

Running t e s t case B

Test ing type−l e v e l m u l t i p l i c a t i o n of 10 p a i r s of numbers .

Al l mults passed

C.2. Variable-width numbers. While the number of total test cases for fixed
width numbers is very large, it is finite. For variable width numbers, there are
infinite test cases. Despite this, the implementation of arithmetic on variable width
numbers facilitates testing in several ways. Since arithmetic is recursive, it is suf-
ficient to test arithmetic on a set of number pairs of a certain width; if these tests
pass, then arithmetic with longer numbers should pass as well. Also, arithmetic
on floating point numbers is defined by arithmetic on naturals, so it is sufficient
to verify the correctness of natural numbers, and, knowing the correctness of the
simple mathematic rules which govern the arithmetic of floating point numbers, we
can infer the correctness of floating point numbers as well.
The testing of variable width numbers involves the use of Template Haskell to
generate test code. Testing of four operations is supported:

data Op = Sum | Mult | Sub | Comp deriving (Enum, Show)

Then we have the following function, which takes two numbers and an operation,
and outputs Q Exp which represents the abstract syntax tree of the Haskell code
being generated. This data type will later be converted to actual code and placed
in the module where the function is called.
mkTestFunc : : Word32 → Word32 → Op → Q Exp
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For example, mkTestFunc 100 750 Mult generates the following expression:

(750 ∗ 100) ≡
( numToIntegral ( tMultD (D7 : $ D5 : $ D0 : $ End) (D1 : $ D0 : $ D0 : $ End) ) )

Another function will take a list of pairs of numbers and call mkTestFunc on each
pair, returning a list of declarations–assigning arbitrary names to each declaration–
as well as another function declaration which contains a list of the generated test
functions.
mkFuncList2 : : S t r ing → [ ( Word32 , Word32) ] → Op → Q [ Dec ]

In another module, the test code is invoked by calling mkFuncListM2, which is identical
to the above function except it allows for its second argument to be of type IO

[(Word32, Word32)], which allows it to be a list of randomly generated numbers. Note
the $ {... , which is a special syntax of Template Haskell, allowing the Q Dec data
type to be inserted as code.
For example, a possible invocation of the test code is:

$ ( mkFuncListM2 ” t e s t ” ( randList2 ’ (10ˆ3 + 1 , 10ˆ4 − 1)>>=return . take

100) Mult )

The output of this call is:

f 0 = . . . : : Bool

f 1 = . . . : : Bool

. . .

f 99 = . . . : : Bool

t e s t = [ f1 , f 2 . . . f98 , f99 ] : : [ Bool ]

Then to evaluate the test function:
>and t e s t

True

Each function beginning with ‘f’ is a test function of the form described above.
This allows calling all of the tests at once or calling any individual test.

C.3. Variable-width numbers. While the number of total test cases for fixed
width numbers was very large, it was finite. For variable width numbers, there are
infinite test cases. Since arithmetic is implemented using the built-in naturals, we
can be reasonable confident of its correctness. We are only testing for errors that
arise for certain edge cases.

Since arithmetic on naturals requires no extra code, it is guaranteed to be correct
if the built in naturals are correct; despite this fact, we implement tests for naturals.

The testing of variable width numbers involves the use of Template Haskell to
generate test code. Testing of four operations is supported: addition, multiplication,
subtraction, and comparison.

Then we have the following function which abstracts over different ways of cre-
ating test cases and outputs Q Exp, which represents the abstract syntax tree of the
Haskell code being generated. This data type will later be converted to actual code
and placed in the module where the function is called.

mkTestCase mf mg f g mka mkb =

fmap return mka>>=λa → fmap return mkb>>=λb →
[ | ( show $a , show $b , $mf ( $ f $a $b ) , ( $g ($mg $a ) ($mg $b ) ) ) | ]

The definition is perhaps not very indicative of how the function works, so as a
concrete example

addTest = mkTestCase [ | numToRational | ] [ | numToRational | ] [ | add | ] [ | (+) | ]
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will generate the expression:

λx y → ( show x , show y ,

numToRational ( add x y ) , numToRational x + numToRational y )

Another function takes a method of random number generation, a test function
of the above form, and a number of tests to perform, and then returns a function
which takes a minimum and maximum bound for the generated numbers and a list
of numbers to exclude from the tests, and returns a ExpQ representing the generated
test cases:
randomTests rnd t e s t m a b ex =

l e t xs = replicate ( ce i l ing $ sqrt $ fromIntegral m) ( rnd a b ex ) in

l i s t E $ take m [ t e s t q r | q ← xs , r ← xs ]

We specialize this function to the different number types:

testRandomNats = randomTests randomNat

testRandomInts = randomTests randomInt

testRandomFloats = randomTests randomFloat

In another module, the tests are invoked as follows:

main : : IO ( )

main = do

sa t ”Nat/ add i t i on ” $ ( testRandomNats addTest 200 0 100000 [ ] )

sa t ”Nat/m u l t i p l i c a t i o n ” $ ( testRandomNats multTest 200 0 100000 [ ] )

sa t ”Nat/mult−nz” $ ( testRandomNats multNZTest 200 1 100000 [ ] )

sa t ”Nat/ comparison ” $ ( testRandomNats compareTest 200 0 100000 [ ] )

sa t ” Int / add i t i on ” $ ( testRandomInts addTest 200 (−100000) 100000 [ ] )

. . .

s a t ” Float / add i t i on ” $ ( testRandomFloats addTest 50 (−1000) 1000 [ ] )

. . .

where sat is a function which takes a list of test cases, checks to see if they are
satisfied, and pretty prints the result.
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