
McMaster University
Department of Computing and Software

Dr. W. Kahl

SFWR ENG 3E03
Exercise Sheet 9

Design and Selection of Programming Languages

8 November 2005

This exercise sheet has four pages and four exercises.

Exercise 9.1 — Partial Correctness

For each of the following Hoare triples, determine whether it holds; if yes, prove it using the rules of
axiomatic semantics, and if no, prove a counter-example using the rules of operational semantics (you may
abbreviate eachexpression evaluation into a single step).

(a) {x ≥ − 5} z := 5 − x {z ≤ 11}

(b) {x ≥ − 5} z := 5 − x {z ≤ 11 ∧ x ≥ − 7}

(c) {x ≥ − 5} z := 5 − x ; x := x + z {z ≤ 11 ∧ x = 2}

(d) {z = abs(x)} if x ≥ 0 then z := − z fi {xz = 2− x }

(e) {z = 0} if x = 0 then w := True else z := 1/ x fi {¬ w → xz = 1}

Exercise 9.2 — Partial Correctness Proof — 50%of Midterm 4, 2003

Consider the following program in a language providing a Java-like printing statement:

s := 1 ;
r := 0 ;
while s ≤ n do

r := r + 1 ;
s := s + 2 ∗ r + 1 ;
println (r + " " + s)

 od

(a) What is the output of this program forn = 30?

(b) Give an equation relating the values ofr ands in eachprintln statement.

(c) For this programwithout the println statement,prove partial correctness with respect to the
precondition { n ≥ 0 } and thepostcondition { 2r ≤ n ∧ n < 2(r + 1) }.

Hint: Use the equation from (b)as part of the invariant!

Exercise 9.3 — Operational and Axiomatic Semantics: Base-2-Logarithm — 30%of Final 2005

(a) ≈ 3% Define what the phrase “StatementS is partially correct with respect to the preconditionQ and
the postconditionR” means in terms of operational semantics.

Written in the simple imperative programming language for which operational and axiomatic semantics rules
are available on the distributed rule sheet, let the following program fragmentP, with int variablesi, k, and
n, be given in two variants, one with simultaneous assignments, and one without::

(k, i) := (1, −1);
while k ≤ n do

(k, i) := (k ∗ 2, i + 1)
od;

k := 1;
i := −1;
while k ≤ n do

k := k ∗ 2;
i := i + 1

od;

This program fragment is intended to calculate the base-2-logarithm ofn, as expressed by the following
post-conditionPost:

i2 ≤ n ∧ n < i+12

(b) ≈ 6% Provide a derivation in the operational semantics that shows that the precondition “True” is too
weak, i.e., that the programP (in theright variantwithout simultaneous assignments) isnot partially
correct with respect to the precondition “True” and the above postcondition. (You may omit the details
for expression evaluation.)

Explain why your derivation shows that.

(c) ≈ 4% Identify the weakest precondition for which the program fragmentP can be proven partially
correct with respect to the above postcondition.Explain!

(True is “weaker” than every other conditionQ, sinceQ ⇒ True holds for everyQ.)

(d) ≈ 18% Formally prove thatP is partially correct with respect to the precondition you stated in (c) and
the above postcondition:

Post : ⇔ i2 ≤ n ∧ n < i+12

only the version with simultaneous assignments (left), or
only the version without (right).

Choosewhether you consider

Include all intermediate steps of the proof, andshowalso theimplications used.

Exercise 9.4 — Imperative Programs with Nested Scopes — 20%of Final 2004 (adapted)

For this question, theabstract syntax of statements of SImPL-0.0 will be replaced by the following
definitions that allow declarations to occur anywhere:

data Program = MkProgram Block

type Block = [Statement]

data Statement
= Decl Variable Type
| MkBlock Block
| Assignment Variable Expression
| Conditional Expression Statement Statement
| Loop Expression Statement

(a) Change the SImPL lexer and parser to the followingconcrete statement syntax where variable
declarations are introduced by the keywordvar, and blocks are delimited by the keywordsbegin and
end instead of by braces; we also introduce the keywordskip for the empty block:

Stmt ::= skip
 | var Type Id ;
 | Id := Expr ;
 | if Expr then Stmt elseStmt
 | while Expr do Stmt
 | begin ∗Stmt end

Fornotation, we use the following conventions:

– “A → B” denotes the set oftotal functions from the setA to the setB.

– “A |→ B” denotes the set ofpartial functions from the setA to the setB.

– “ [A]” denotes the set of finite sequences (lists) of elements from the setA.

We choose the followingbasic semantic domains:

Val = Bool + Num values data Value = ValBool Bool | ValInt Int

SVal = Val + {Ω} storable values type SVal = Maybe Value

Env = Id |→ SVal environments type Env = Map Variable SVal

State = [Env] states type State = [Env]

We denote the elements ofVal by True, False, 0, 1, 2, …
We denote the elements ofSVal by Ω, True, False, 0, 1, 2, …

From anoperational point of view, a programstarts executing in astate consisting of asingle, empty
environment.

At any time, the first element of the environment list that is the state is called thecurrent environment.

A variable declaration “var ty v” produces a run-time error ifv is in the domain of the current environment,
and otherwise entersv associated withΩ (markinguninitialised variables) into the current environment.

When execution moves past abegin, a new, empty current environment is added to the state. When execution
moves past the matchingend, this current environment is dropped.

A reference to a variable (in assignments or expressions) namedv refers to the first environment in the current
state that hasv in its domain of definition.

Assignments and references to non-existing variables give rise to run-time errors. In expressions, variable
references to uninitialised variables (i.e., associated withΩ), also give rise to run-time errors.

(b) Besideseach line of the following statement sequence, write down theState that is reachedafter
execution of the respective line (it has been written down for you in the first few lines):

skip ; [{ }]

var int k ; [{ k → Ω }]

begin [{ } , { k → Ω }]

var int q ; [{ q → Ω } , { k → Ω }]

k := 9 ; [{ q → Ω } , { k → 9 }]

var int r ;

q := 5 ∗ k ;

var int k ;

begin

var int r ;

r := q − 8 ;

k := r + 5

end

q := q + k ;

end

In the following, you are asked to define the operational semantics of selected syntactic constructs. You may
want to provide derivation rules for operational semantics assertions, similar to those presented in the lecture.
In any case, also modify the definitions of the Haskell interpreter functions in the moduleSImPLEval:

evalExpr : : Expression → State → Maybe Value
interpStmt : : Statement → State → Maybe State

(c) Define the statement semantics ofbegin S end for an arbitrary statementS : Stmt.

(In Haskell, defineinterpStmt (BeginEnd stmt) for an arbitrarystmt : : Statement.)

(d) Define the statement semantics ofvar ty v for an arbitrary typety and an arbitrary variable namev.

(In Haskell, defineinterpStmt (Decl v ty) for arbitraryty : : Type andv : : Variable.)

(e) Define the remaining cases of statement semantics. Also adapt the expression semantics inSImPLEval
.hs to this setting.

