McMaster University
 Department of Computing and Software
 Dr. W. Kahl

SFWR ENG 3E03

Design and Selection of Programming Languages

4 November 2005

Exercise 8.1 - Using Operational Semantics to Prove Incorrectness

The following Hoare triples do not hold.
For each of these Hoare triples, present a derivation in the operational semantics that proves a counterexample to the statement.
(a) $\{x \geq-5\} z:=5-x\{z \leq 11 \wedge x \geq-3\}$
(b) $\{x \geq-5\} z:=5-x ; x:=z+2\{z \leq 11 \wedge x \geq-3\}$
"Proving a counterexample" for the Hoare triple

$$
\{p r e\} P r o g\{p o s t\}
$$

means to derive an assertion

$$
\sigma_{1}(\text { Prog }) \Rightarrow \sigma_{2}
$$

involving

- a state σ_{1} for which pre holds, and
- a state σ_{2} for which post does not hold.

Solution Hints

(a) Using operational semantics, we can prove a counterexample:

$$
\frac{\{x \mapsto-5\}(5) \Rightarrow 5 \quad\{x \mapsto-5\}(x) \Rightarrow-5}{\{x \mapsto-5\}(5-x) \Rightarrow 10}
$$

This last state clearly does not satisfy $\{z \leq 11 \wedge x \geq-3\}$
(b) For $\{x \geq-5\} z:=5-x ; x:=x+2\{z \leq 11 \wedge x \geq-3\}$, we again use operational semantics (expression evaluation not shown) to prove a counterexample:
$\frac{\{x \mapsto 20\}(5-x) \Rightarrow-15}{\{x \mapsto 20\}(z:=5-x) \Rightarrow\{x \mapsto 20, z \mapsto-15\}}$
$\{x \mapsto 20\}(z:=5-x ; x:=z+2) \Rightarrow\{x \mapsto-13, z \mapsto-15\}$
Although $\{x \mapsto 20\}$ satisfies the precondition $\{x \geq-5\}$, the final state $\{x \mapsto-13, z \mapsto-15\}$ does not satisfy the postcondition $\{z \leq 11 \wedge x \geq-3\}$.

Exercise 8.2 - Semantics of Exceptions

We consider a simple imperative programming language with exceptions, with the following abstract syntax:

```
Stmt \(::=\) skip
    | Id := Expr
    | Stmt ; Stmt
    if Expr then Stmt else Stmt
    while Expr do Stmt
    try Stmt catch( Id ) Stmt
```

 throw Expr Op \(\quad:=+|-|*| /|\leq|\geq|<|>\)

(a) Define Haskell datatypes for the abstract syntax of this language.

We still have the following basic semantic domains:

$$
\begin{array}{lll}
\text { Val } & =\text { Bool }+ \text { Num } & \text { values } \\
\text { Store } & =I d \rightarrow \text { Val } & \\
\text { (simple) stores }
\end{array}
$$

We denote the elements of Val by True, False, $0,1,2, \ldots$
(b) For each of the following, indicate whether it denotes an element of the set Store, i.e., a possible Store (the notation " $a \mapsto b$ " means exactly the pair " (a, b) "):

1. True: \square False: $\square \quad\{b \mapsto\{$ True $\}, n \mapsto 0\}$
2. True: \square False: $\square\{k \mapsto 7, b \mapsto 42, m \mapsto 1001, n \mapsto 1, b \mapsto$ False $\}$
3. True: \square False: $\square \quad\{b \mapsto 42, k \mapsto$ True $\}$
4. True: \square False: $\square \quad\{k \mapsto 5, b \mapsto$ True, $s \mapsto$ skip $\}$
5. True: \square False: $\square \quad\} \times$ Val
6. True: \square False: $\square \quad\{n\} \times\{0\}$
7. True: \square False: $\square\{n\} \times\{0,1,2\}$
8. True: \square False: $\square \quad\{k, m, n\} \times\{0\}$

From an operational point of view, assuming that the expression e evaluates to the number k, the statement "throw e " raises exception k.
We allow only numbers as exceptions.
If a statement raising an exception is not enclosed by any "try _ catch" construct, then this exception immediately leads to program termination with an uncaught exception.
If there is an enclosing "try _ catch" construct, then this is of the shape "try _ catch(i) s_{2} " for some identifier i and a statement s_{2}. In that case, execution proceeds immediately to s_{2} in an environment where the identifier i is bound to the numerical value of the caught exception.
(c) Write down the Store that the statement s_{2} executes from when control arrives at s_{2} in the following program:

$$
k:=100 ; \operatorname{try} q:=42 \text {; throw } 14 ; s:=q+1 \operatorname{catch}(n) s_{2}
$$

Solution Hints

The store is: $\quad\{k \mapsto 100, q \mapsto 42, n \mapsto 14\}$

