
McMaster University
Department of Computing and Software

Dr. W. Kahl

SFWR ENG 3E03
Exercise Sheet 7

Design and Selection of Programming Languages

30 October 2006

Exercise 7.1 — Defining Haskell Functions

(a) Define the Haskell functioninterleave : : [a] → [a] → [a]

such thatinterleave xs ys evaluates to a list alternatingly containing elements ofxs andys.

E.g., interleave "1234" "abcdefg" = "1a2b3c4defg"

(b) Write a Haskell programInterleave.hs that accepts two file or three file names as command-
line arguments, and writes the interleaving of the lines of the first two files into the third file,
when given, or to standard output otherwise.

(c) Define the Haskell functionwc : : String → (Integer , Integer , Integer)

such that wc s = (charCount , wordCount , lineCount) , iff the three tuple members are,
repectively, the number of characters, words, and lines ins.

Challenge: Calculating the three counts separately keeps the wholes in memory — this could
occupy gigabytes. Write a version ofwc that processes its argument string only once (typically
via direct recursion).

(d) Write a Haskell programWordCount.hs that behaves like the unix utilitywc (at least without
flags), namely calculating and displaying the counts for all its arguments, e.g.:

SE3E03/2006 $ wc Sheet*.lt
 391 1728 10938 Sheet1.lt
 1277 4689 35751 Sheet2.lt
 455 1688 11497 Sheet3.lt
 646 2989 16739 Sheet4.lt
 477 2086 11730 Sheet5.lt
 536 2493 13229 Sheet6.lt
 348 1468 8542 Sheet7.lt
 4130 17141 108426 total

If no arguments are given, standard input is counted instead.

SE3E03/2006 $ wc < Sheet7.lt
 348 1468 8542

