Dr. W. Kahl

Design and Selection of Programming Languages

18 October 2006

Exercise 6.1 - Haskell Evaluation (25% of 90 minutes Midterm 2, 2005)

Let the following Haskell definition be given:

```
from k = k : from (k+1)
prune True xs = []
prune False xs = xs
eat p [] = from (7 * 8)
eat p (x : xs) = x : prune (p x) (eat (not . p) xs)
```

Simulate Haskell evaluation for the following expression, i.e., write down the complete sequence of intermediate expressions:

```
eat (< 5) (from 5)
```

Note: You may introduce abbreviations for repeated subexpressions, or use repetition marks for material that is unchanged from the previous line.

Solution Hints

```
eat (< 5) (from 5)
--> eat (<5) (5: from (5+1))
--> 5: prune ((<5) 5) (eat (not . (< 5)) (from (5+1))) -- *
-> 5: prune (5<5) (eat (not. (< 5)) (from (5 + 1)))
--> 5: prune False (eat (not . (<5)) (from (5+1)))
--> 5: eat (not.(<5)) (from (5+1))
-> 5: eat (not.(<5)) ((5+1): from ((5+1)+1))
->> 5:(5+1):prune ((not . (<5)) (5+1)) (eat (not . (not . (< 5))) (from ((5+1)+1)))
--> 5:6: prune ((not .(<5)) 6) (eat (not .(not . (<5))) (from (6+1)))
--> 5:6:prune (not ((<5)6)) (eat (not .(not .(<5)))(from (6+1)))
--> 5:6: prune (not (6<5)) (eat (not .(not . (< 5))) (from (6+1))) -- *
-> 5:6: prune (not False) (eat (not .(not .(<5))) (from (6+1)))
-> 5:6: prune True (eat (not .(not.(< 5)))(from (6 + 1)))
--> 5:6:[]
    = [5,6]
```

Exercise 6.2-Haskell Typing (22\% of Midterm 2, 2005)
Provide detailed derivations of the most general Haskell types of the following functions:

```
maybe x f Nothing = x
maybe x f (Just y) = f y
keepof2 k h (x,y) = k (curry h x) y
```

Remember: curry :: $((a, b) \rightarrow c) \rightarrow a \rightarrow b \rightarrow c$

Solution Hints

The prelude definition
data Maybe $a=$ Nothing | Just a
implies the following types for the constructors of this datatype:
Nothing :: Maybe a
Just $:: a \rightarrow$ Maybe a
Starting from the second equation and assuming $x:: q$ and $f:: a \rightarrow b$, we see that $y:: a$ and obtain:
maybe :: $q \rightarrow(a \rightarrow b) \rightarrow($ Maybe $a) \rightarrow b$
With the first equation, we see from the right-hand side that $x:: b$, too, so we have:
maybe $:: b \rightarrow(a \rightarrow b) \rightarrow($ Maybe $a) \rightarrow b$
Using curry :: $((a, b) \rightarrow c) \rightarrow a \rightarrow b \rightarrow c$, we obtain $x:: a$ and $h::(a, b) \rightarrow c$.
So (curry $h x$) : b $\rightarrow c$. Now let us assume that $y:: d$; then we have
$k::((b \rightarrow c) \rightarrow d \rightarrow e)$
for some e, and therefore:
keepof2 $::((b \rightarrow c) \rightarrow d \rightarrow e) \rightarrow((a, b) \rightarrow c) \rightarrow(a, d) \rightarrow e$ $\approx 14 \%$

Exercise 6.3 - Defining Haskell Functions (19\% of Midterm 2, 2005)

Define the following Haskell functions (the solutions are independent of each other, but each can use functions specified in previous items):
(a) $\approx 5 \%$ inits :: [a] \rightarrow [[a]]
such that inits xs evaluates to a list consisting of exactly all prefixes of $x s$ (in which order is irrelevant).
E.g., inits $[1,2,3]=[[],[1],[1,2],[1,2,3]]$
(This is a function exported by the standard library module List.)

Solution Hints

inits :: [a] \rightarrow [$a \mathrm{a}] \mathrm{C} \quad--=$ List.inits
inits [] = [[]]
inits $(x: x s)=[]: \operatorname{map}(x:)($ inits $x s)$
Or:

```
inits' :: [a] -> [[a]] init' :: [a] }->[a] --= Prelude.init
inits' [] = [[]]
init' [ }x\mathrm{ ] = []
inits' xs = xs : inits' ( init' xs)
init'}(x:xs)=x : init xs
```

(b) $\approx 6 \%$ fromThen :: Integer \rightarrow Integer \rightarrow [Integer]
such that fromThen $x 1 \times 2=[x 1, x 2$.. $]$.

Solution Hints

```
fromThen :: Integer }->\mathrm{ Integer }->\mathrm{ [ Integer ]
fromThen x1 x2 = x1: fromThen x2 ( x2 + x2 - x1)
fromThen' x1 x2 = ft x1
```

where
ft $x 1=x 1: f t(x 1+d)$
$d=x 2-x 1$
(c) $\approx 8 \%$ fromThenTo $::$ Integer \rightarrow Integer \rightarrow Integer \rightarrow [Integer $]$
such that fromThenTo x1 x2 x3 $=[x 1, x 2$.. x3], e.g.:
fromThenTo $579=[5,7,9]$
fromThenTo $5710=[5,7,9]$
fromThenTo 7510 = []
fromThenTo $751=[7,5,3,1]$

Solution Hints

fromThenTo :: Integer \rightarrow Integer \rightarrow Integer \rightarrow [Integer]
fromThenTo x1 x2 x3 = takeWhile $p \$$ fromThen x1 x2

where

$$
p=\text { if } x 2 \geq x 1 \text { then }(\leq x 3) \text { else }(\geq x 3)
$$

Or:
fromThenTo' :: Integer \rightarrow Integer \rightarrow Integer \rightarrow [Integer]
fromThenTo' x1 x2 x3 = ftt x1

where

$$
\begin{aligned}
& \text { ftt } \times 1 \mid p \times 1=x 1: \text { ftt }(x 1+d) \\
& \quad \mid \text { otherwise }=[] \\
& d=x 2-x 1 \\
& p=\text { if } d \geq 0 \text { then }(\leq x 3) \text { else }(\geq x 3)
\end{aligned}
$$

Note: fromThen and fromThenTo are the functions underlying the syntactic sugar [1,3 ..] and [1,3 .. 10] - you should not use this syntax to define these functions.

Exercise 6.4-Simple Graphs (34\% of Midterm 2, 2005)

A simple graph can be (naïvely) represented in Haskell as a list of pairs, where an edge from node x to node y is represented by the pair (x, y), and the sequencing of pairs in the list does not matter.

For example, one representation of the graph drawn to the left is

$$
g r=[(1,2),(2,3),(2,5),(3,4),(4,1)]
$$

Let the following type synonym be given:
type Graph $a=[(a, a)]$
(a) $\approx 6 \%$ Define successors :: Eq $a \Rightarrow$ Graph $a \rightarrow a \rightarrow$ [a] such that successors $g n$ returns a list containing exactly the endnodes of those edges of the graph g that start at node n.
E.g., successors gr $2=[3,5]$ and successors gr $5=[]$

Solution Hints

successors, successors' :: Eq $a \Rightarrow$ Graph $a \rightarrow a \rightarrow[a]$
successors $g n=[y \mid(x, y) \leftarrow g, x \equiv n]--=\operatorname{map} \operatorname{snd}(f i l t e r((\mathrm{n}==) . \mathrm{fst}) \mathrm{g})$
successors' [] $n=[]$
successors' $((x, y): p s) n=$ if $x \equiv n$ then y : successors' $p s n$ else successors' $p s n$
(b) $\approx 10 \%$ pathGraph :: [a] Graph a
such that path $G r a p h\left[x_{1}, \ldots, x_{n}\right]$ evaluates to the list $\left[\left(x_{1}, x_{2}\right), \ldots,\left(x_{n-1}, x_{n}\right)\right]$ containing the pairs of immediately consecutive elements in xs, e.g.,
pathGraph $[2,3,4,1,2,5]=[(2,3),(3,4),(4,1),(1,2),(2,5)]$, which is just another representation fo the graph drawn above.

Solution Hints

pathGraph :: [a] $\rightarrow[(a, a)]$
pathGraph $(x: x s \cong(y: y s))=(x, y):$ pathGraph $x s$
pathGraph_= []
(c) $\approx 8 \%$ A path in a simple graph can be represented as a list of nodes, as above in (b). Define the Haskell function hasCycle :: Eq $a \Rightarrow[a] \rightarrow$ Bool such that hasCycle p is true if path p contains a cycle, i.e., if there is a node that occurs at least twice in p. For example, the path [2,3,4,1,2,5] has a cycle around node 2.

Solution Hints
hasCycle :: Eq a $\Rightarrow[$ a] Bool
hasCycle [] = True
hasCycle ($x: x s$) $=x$ 'elem' $x s$ || hasCycle xs
(d) $\approx 10 \%$ Define edgeGraph :: Eq $a \Rightarrow$ Graph $a \rightarrow \operatorname{Graph}(a, a)$ such that edgeGraph g returns the edge graph of g. This edge graph has edges of g as nodes, and has an edge from e1 to e2 iff the end node of $e 1$ is equal to the start node of $e 2$ (as edges in g).

Solution Hints

```
edgeGraph :: Eq a \(\Rightarrow\) Graph \(a \rightarrow \operatorname{Graph}(a, a)\)
edgeGraph \(g=\left[(e 1, e 2) \mid e 1 \cong\left(\_, x\right) \leftarrow g, e 2 \cong\left(y,{ }_{-}\right) \leftarrow g, x \equiv y\right.\)
]
```


(e) new Define paths :: Eq a => Graph a -> [[a]] to calculate all non-empty cycle-free paths of a graph.

Solution Hints

We use induction over the number of edges: Adding an edge to a graph may combine two previously existing paths, or extend one previously existing path either at the beginning or at the end.

```
paths :: Eq a = Graph a }->\mathrm{ [[a]]
paths [] = []
paths(e\cong(x,y):es) = let ps = paths es in
    ps #
    [x:zs|zs\cong(z:zs')\leftarrowps,y\equivz,x 'notElem' zs ]
    +
    [zs + [y]| zs\leftarrowps, x \last zs, x 'notElem` zs ]
    +
    [zs + zs'| zs \leftarrowps, x \ last zs, zs'\leftarrowps, y = head zs',
        all ('notElem' zs) zs']
    +
    if }x\equivy\mathrm{ then [] else [[ }x,y]
```

