Dr. W. Kahl

Design and Selection of Programming Languages

18 October 2006

Exercise 6.1 - Haskell Evaluation (25% of 90 minutes Midterm 2, 2005)

Let the following Haskell definition be given:

```
from k = k : from (k+1)
prune True xs = []
prune False xs = xs
eat p [] = from (7 * 8)
eat p (x : xs) = x : prune (p x) (eat (not . p) xs)
```

Simulate Haskell evaluation for the following expression, i.e., write down the complete sequence of intermediate expressions:

```
eat (< 5) (from 5)
```

Note: You may introduce abbreviations for repeated subexpressions, or use repetition marks for material that is unchanged from the previous line.

Exercise 6.2 - Haskell Typing (22% of Midterm 2, 2005)

Provide detailed derivations of the most general Haskell types of the following functions:

```
maybe x f Nothing = x
maybe x f (Just y) = f y
keepof2 k h (x,y) = k (curry h x) y
```

Remember: curry :: $((a, b) \rightarrow c) \rightarrow a \rightarrow b \rightarrow c$

Exercise 6.3 - Defining Haskell Functions (19\% of Midterm 2, 2005)
Define the following Haskell functions (the solutions are independent of each other, but each can use functions specified in previous items):
(a) $\approx 5 \%$ inits :: [a] \rightarrow [[a]]
such that inits $x s$ evaluates to a list consisting of exactly all prefixes of $x s$ (in which order is irrelevant).
E.g., inits $[1,2,3]=[[],[1],[1,2],[1,2,3]]$
(This is a function exported by the standard library module List.)
(b) $\approx 6 \%$ fromThen :: Integer \rightarrow Integer \rightarrow [Integer]
such that fromThen $x 1 \times 2=[x 1, x 2 .$.$] .$
(c) $\approx 8 \%$ fromThenTo $::$ Integer \rightarrow Integer \rightarrow Integer \rightarrow [Integer]
such that fromThenTo $x 1 \times 2 \times 3=[x 1, x 2$.. $x 3]$, e.g.:
fromThenTo $579=[5,7,9]$
fromThenTo $5710=[5,7,9]$
fromThenTo 7510 = []
fromThenTo $751=[7,5,3,1]$
Note: fromThen and fromThenTo are the functions underlying the syntactic sugar [1, 3 ..] and [1,3 .. 10] - you should not use this syntax to define these functions.

Exercise 6.4-Simple Graphs (34\% of Midterm 2, 2005)

A simple graph can be (naïvely) represented in Haskell as a list of pairs, where an edge from node x to node y is represented by the pair (x, y), and the sequencing of pairs in the list does not matter.

$$
g r=[(1,2),(2,3),(2,5),(3,4),(4,1)]
$$

Let the following type synonym be given:
type Graph $a=[(a, a)]$
(a) $\approx 6 \%$ Define successors :: Eq $a \Rightarrow$ Graph $a \rightarrow a \rightarrow$ [a] such that successors $g n$ returns a list containing exactly the endnodes of those edges of the graph g that start at node n.
E.g., successors gr $2=[3,5]$ and successors gr $5=[]$
(b) $\approx 10 \%$ pathGraph $::[a] \rightarrow$ Graph a
such that path $G r a p h\left[x_{1}, \ldots, x_{n}\right]$ evaluates to the list $\left[\left(x_{1}, x_{2}\right), \ldots,\left(x_{n-1}, x_{n}\right)\right]$ containing the pairs of immediately consecutive elements in xs, e.g.,
pathGraph $[2,3,4,1,2,5]=[(2,3),(3,4),(4,1),(1,2),(2,5)]$, which is just another representation fo the graph drawn above.
(c) $\approx 8 \%$ A path in a simple graph can be represented as a list of nodes, as above in (b). Define the Haskell function hasCycle :: Eq $a \Rightarrow[a] \rightarrow$ Bool such that hasCycle p is true if path p contains a cycle, i.e., if there is a node that occurs at least twice in p. For example, the path $[2,3,4,1,2,5$] has a cycle around node 2.
(d) $\approx 10 \%$ Define edgeGraph :: Eq $a \Rightarrow$ Graph $a \rightarrow \operatorname{Graph}(a, a)$ such that edgeGraph g returns the edge graph of g. This edge graph has edges of g as nodes, and has an edge from e1 to e2 iff the end node of e1 is equal to the start node of e2 (as edges in g).
(e) new Define paths :: Eq a => Graph a -> [[a]] to calculate all non-empty cycle-free paths of a graph.

