
McMaster University
Department of Computing and Software

Dr. W. Kahl

SFWR ENG 3E03
Exercise Sheet 5
Solution Hints

Design and Selection of Programming Languages

11 October 2006

Exercise 5.1 — Haskell Evaluation (36%of Midterm 1, 2004)

Assume the following Haskell definitions to be given:

succ n = n+1 − − reduce in one step, e.g.:succ 5 → 6

take :: Int -> [a] -> [a]
take 0 _ = []
take _ [] = []
take n (x:xs) = x : take (n-1) xs

feed h q y = q : feed h (q + y) (h y)

Simulate Haskell evaluation for the following expression (write down the sequence of intermediate
expressions):

take 3 (feed succ 0 1)

Note: You may introduceabbreviations for repeated subexpressions, or userepetition marks for
material that is unchanged from the previous line. In particular,write “ s” instead of“ succ”!

Solution Hints
13 steps, 1 contractible arith

take 3 (feed succ 0 1)
= take 3 (0 : feed succ (0 + 1) (succ 1))
= 0 : take (3−1) (feed succ (0 + 1) (succ 1))
= 0 : take 2 (feed succ (0 + 1) (succ 1))
= 0 : take 2 ((0 + 1) : feed succ ((0 + 1) + succ 1) (succ (succ 1)))
= 0 : (0 + 1) : take (2−1) (feed succ ((0 + 1) + succ 1) (succ (succ 1)))
= 0 : 1 : take (2−1) (feed succ (1 + succ 1) (succ (succ 1)))
= 0 : 1 : take 1 (feed succ (1 + succ 1) (succ (succ 1)))
= 0 : 1 : take 1 ((1 + succ 1) : feed (+) succ ((1 + succ 1) + succ (succ 1)) (succ (succ (succ 1)
)))
= 0 : 1 : (1 + succ 1) : take (1−1) (feed succ ((1 + succ 1) + succ (succ 1)) (succ (succ (succ 1)
)))
= 0 : 1 : (1 + 2) : take (1−1) (feed succ ((1 + 2) + succ (succ 1)) (succ (succ 2)))
= 0 : 1 : 3 : take (1−1) (feed succ (3 + succ (succ 1)) (succ (succ 2)))
= 0 : 1 : 3 : take 0 (feed succ (3 + succ (succ 1)) (succ (succ 2)))
= 0 : 1 : 3 : []

3% per necessary step: • 1% for reducing the right redex
• 2% for performing the reduction correctly
• -1% for not writing down

Exercise 5.2 — Finite-State Machines (25%of Midterm 1, 2004)

Let the following type synonyms be given, as in the presentation in the first lecture:

type State = Int
type Symbol = Char
type TransRel = [(State , Symbol , State)]
type FSM = (State , TransRel , [State])

2

a

b

0

c a

1

3

b

a

(a) Define fsm1 : : FSM such that it represents the finite-state machine drawn above (with start state
circled and end states in boxes):

(b) Define the Haskell function isDet : : FSM → Bool such thatisDet fsm evaluates to the
Boolean value indicating whether the finite-state machinefsm is deterministic or not.

For example, isDet fsm1 = False since there are twob-edges from state 1 to different nodes.

Hint: Define auxiliary functions! For example:
– Calculate all start nodes of transitions in aTransRel.
– Given a state, calculate all edges leaving that state in aTransRel.

– Given aSymbol and aTransRel, find all target nodes of edges with that symbol.

– Given aState and aTransRel, find out whether any edges from that state violate determinacy.

Other functions may be useful, too.Document your functions!

Solution Hints
type State = Int
type Symbol = Char
type TransRel = [(State , Symbol , State)]

type FSM = (State , TransRel , [State])

fsm1 : : FSM −− 6%
fsm1 = (0 , tr1 , [1])
where
tr1 =
[(0 ,’a’,1)
, (1,’b’,2)
, (1,’b’,3)
, (2 ,’a’,1)
, (2 ,’c’,0)
, (3 ,’a’,2)
]

edgeStarts tr = [s | (s , c , t) ← tr] −− 3%

outEdges tr s = [(c , t) | (s’ ,c , t) ← tr , s’ ≡ s] −− 3%

isUnique es (c , t) = all (t ≡) [t’ | (c’ , t’) ← es , c’ ≡ c] −− 5%

isDetState tr s = all (isUnique es) es −− 4%
where es = outEdges tr s

isDet (s0 , tr , fin) = all (isDetState tr) (edgeStarts tr) −− 4%

Exercise 5.3 — Haskell Typing (19%of Midterm 1, 2004)

Providedetailed derivationsof the Haskell types of the following functions:

swibble x y = [(x , y) , (x ++ "’", y + 1)]

swoon g h = [g ((1 +) . h)]

Solution Hints
Type classes have not been taught yet, only mentioned: Numeric types can be defaulted toInteger or
Int.

swibble : : (Num n) ⇒ String → n → [(String , n)]

Assuming1 : : Integer , we must havey : : Integer because ofy + 1.

Since"’" : : String, we also havex : : String because ofx ++ "’" : : String.

Then (x ,y) : : (String , Integer), and the type ofswibble follows easily.

swoon : : (Num n) ⇒ ((a → n) → b) → (a → n) → [b]

Assuming1 : : Integer , we have(1 +) : : Integer → Integer , and because of the composition, we
must have

h : : a → Integer for some typea.

Therefore, we have((1 +) ° h) : : a → Integer , and may assumeg : : (a → Integer) → b for some
typeb.

Then we have[g ((1 +) ° h)] : : b, and therefore

swoon g : : (a → Integer) → b

and

swoon : : ((a → Integer) → b) → (a → Integer) → b.

Exercise 5.4 (Skeleton file is on the course page)

We define a type of transition functions that define state transitions triggered byinputs and also
producingoutputs:

type Transition state input output = (state , input) → (state , output)

(a) Define a Haskell function

process : : Transition state input output → state → [input] → [output]

that calculates the list of outputs produced by a transition function given a starting state and a list
of inputs.

Solution Hints
process tr s [] = []
process tr s (input : inputs) = let

(s’ , output) = tr (s , input)
in output : process tr s’ inputs

Usingprocess from (b) and prelude functions, the definition

runprocess : : Transition state String String → state → IO ()
runprocess tr s = do

hSetBuffering stdout LineBuffering −− requires: “import System.IO” at beginning of module
interact (unlines ° process tr s ° lines)

allows runprocess to turn a transition withString inputs and outputs into a runnable program.

Try: runprocess id 0

(b) Define a transition function

countEcho : : Transition Integer String String

that keeps a counter as its state and otherwise just reproduces the input prefixed withline numbers
as output.

Try: runprocess countEcho 0

Solution Hints
countEcho (count , input) = (count’ , shows count’ (’ ’ : input))

where count’ = succ count

(c) Define a transition function

trAdd : : Transition Integer String String

that uses the prelude functionsread and show to add theInteger reading of the input to the
accumulating state, and outputs that state as a string.

Try: runprocess trAdd 0

Solution Hints
trAdd (s , input) = (s’ , show s’)
where

n = read input
s’ = s + n

(d) Define a transition function

polish : : Transition [Integer] String String

that implementsa reverse Polish notation calculator by pushing number inputson the stack,always
outputing the top of the stack (if present), and interpreting+ , − , ∗ , / as taking their arguments

from the stack and pushing the result back onto the stack.

Try: runprocess polish []

Solution Hints
polish (n : m : ks , "+") = (k : ks , show k) where k = m + n
polish (n : m : ks , "-") = (k : ks , show k) where k = m − n
polish (n : m : ks , "*") = (k : ks , show k) where k = m ∗ n
polish (n : m : ks , "/") = (k : ks , show k) where k = m ‘div‘ n
polish (ks , input) = (k : ks , show k) where k = read input

