McMaster University
Department of Computing and Software
Dr. W. Kahl

SFWR ENG 3E03

Design and Selection of Programming Languages

11 October 2006

Exercise 5.1-Haskell Evaluation (36\% of Midterm 1, 2004)

Assume the following Haskell definitions to be given:

```
succ n = n+1 -- reduce in one step, e.g.: succ 5 ->6
take :: Int -> [a] -> [a]
take 0 _ = []
take _ [] = []
take n (x:xs) = x : take (n-1) xs
feed h q y = q : feed h (q + y) (h y)
```

Simulate Haskell evaluation for the following expression (write down the sequence of intermediate expressions):

```
take 3 (feed succ 0 1)
```

Note: You may introduce abbreviations for repeated subexpressions, or use repetition marks for material that is unchanged from the previous line. In particular, write " s " instead of "succ"!

Solution Hints

```
13 steps, 1 contractible arith
take 3 (feed succ 0 1)
= take 3 (0: feed succ (0 + 1) (succ 1))
=0 : take (3-1)(feed succ (0 + 1) (succ 1))
= 0: take 2 (feed succ (0 + 1) (succ 1))
= 0 : take 2 ( (0 + 1): feed succ ((0 + 1) + succ 1) ( succ (succ 1)))
= 0:(0+1):take (2-1) (feed succ ((0 + 1) + succ 1) (succ (succ 1)))
= 0:1: take (2-1)(feed succ (1+ succ 1) (succ (succ 1)))
= 0:1: take 1 (feed succ (1 + succ 1) (succ ( succ 1)))
= 0:1:take 1 ((1+\operatorname{succ}1):feed (+) succ ((1+\operatorname{succ}1) + succ (succ 1)) (succ (succ (succ 1)
)))
= 0:1:(1+ succ 1):take (1-1)(feed succ ((1+\operatorname{succ}1) + succ (succ 1))(succ (succ (succ 1)
)))
= 0:1:(1+2):take (1-1)(feed succ ((1+2) + succ (succ 1)) (succ (succ 2)))
= 0:1:3:take (1-1)(feed succ (3 + succ (succ 1)) (succ (succ 2)))
=0:1:3:take 0 (feed succ (3+succ (succ 1))(succ (succ 2)))
= 0:1:3:[]
```

3% per necessary step: • 1% for reducing the right redex

- 2% for performing the reduction correctly
- -1% for not writing down

Exercise 5.2 - Finite-State Machines ($\mathbf{2 5 \%}$ of Midterm 1, 2004)

Let the following type synonyms be given, as in the presentation in the first lecture:

```
type State = Int
type Symbol = Char
type TransRel = [(State, Symbol, State)]
type FSM = (State, TransRel, [State])
```


(a) Define fsm1 :: FSM such that it represents the finite-state machine drawn above (with start state circled and end states in boxes):
(b) Define the Haskell function isDet :: FSM \rightarrow Bool such that isDet fsm evaluates to the Boolean value indicating whether the finite-state machine fsm is deterministic or not.
For example, isDet fsm1 = False since there are two b-edges from state 1 to different nodes.
Hint: Define auxiliary functions! For example:

- Calculate all start nodes of transitions in a TransRel.
- Given a state, calculate all edges leaving that state in a TransRel.
- Given a Symbol and a TransRel, find all target nodes of edges with that symbol.
- Given a State and a TransRel, find out whether any edges from that state violate determinacy.

Other functions may be useful, too. Document your functions!

Solution Hints

type State = Int
type Symbol = Char
type TransRel $=[($ State, Symbol, State $)]$
type FSM = (State, TransRel, [State] $)$

```
fsm1 :: FSM -- 6%
fsm1 = (0, tr1, [1])
where
    tr1 =
    [(0,'a',1)
    ,(1,'b',2)
    ,(1,'b',3)
    ,(2,'a',1)
    ,(2,'c',0)
    ,(3,'a',2)
    ]
edgeStarts tr =[s|(s,c,t)\leftarrowtr] -- 3%
```

outEdges tr $s=\left[(c, t) \mid\left(s^{\prime}, c, t\right) \leftarrow t r, s^{\prime} \equiv s\right]--3 \%$
isUnique es $(c, t)=$ all $(t \equiv)\left[t^{\prime} \mid\left(c^{\prime}, t^{\prime}\right) \leftarrow e s, c^{\prime} \equiv c\right]--5 \%$
isDetState tr $s=$ all (isUnique es) es $--4 \%$
where es $=$ outEdges tr s
isDet $(s 0$, tr, fin $)=$ all (isDetState tr $)($ edgeStarts $t r)--4 \%$

Exercise 5.3 - Haskell Typing (19% of Midterm 1, 2004)

Provide detailed derivations of the Haskell types of the following functions:


```
swoon \(g h=[g(1+) . h)]\)
```


Solution Hints

Type classes have not been taught yet, only mentioned: Numeric types can be defaulted to Integer or Int.
swibble :: $($ Num $n) \Rightarrow$ String $\rightarrow n \rightarrow[($ String, $n)]$
Assuming $1::$ Integer, we must have y :: Integer because of $y+1$.
Since """ :: String, we also have x :: String because of x + """ :: String.
Then $(x, y)::$ (String, Integer), and the type of swibble follows easily.
swoon :: $($ Num $n) \Rightarrow((a \rightarrow n) \rightarrow b) \rightarrow(a \rightarrow n) \rightarrow[b]$
Assuming $1::$ Integer, we have $(1+)::$ Integer \rightarrow Integer, and because of the composition, we must have
$h:: a \rightarrow$ Integer for some type a.
Therefore, we have $((1+) \circ h):: a \rightarrow$ Integer, and may assume $g::(a \rightarrow$ Integer $) \rightarrow b$ for some type b.
Then we have $[g((1+) \circ h)]:: b$, and therefore
swoon $g::(a \rightarrow$ Integer $) \rightarrow b$
and
swoon :: $((a \rightarrow$ Integer $) \rightarrow b) \rightarrow(a \rightarrow$ Integer $) \rightarrow b$.

Exercise 5.4 (Skeleton file is on the course page)

We define a type of transition functions that define state transitions triggered by inputs and also producing outputs:
type Transition state input output $=($ state, input $) \rightarrow($ state, output $)$
(a) Define a Haskell function

```
process :: Transition state input output \(\rightarrow\) state \(\rightarrow\) [ input] \(\rightarrow\) [ output]
```

that calculates the list of outputs produced by a transition function given a starting state and a list of inputs.

```
Solution Hints
process tr s [] = []
process tr s (input: inputs) = let
    ( s', output) = tr (s, input)
    in output : process tr s' inputs
```

Using process from (b) and prelude functions, the definition

```
runprocess :: Transition state String String -> state }->\mathrm{ IO()
```

runprocess tr s = do
hSetBuffering stdout LineBuffering -- requires: "import System.IO" at beginning of module interact (unlines o process tr solines)
allows runprocess to turn a transition with String inputs and outputs into a runnable program.
Try: runprocess id 0
(b) Define a transition function

```
    countEcho :: Transition Integer String String
```

that keeps a counter as its state and otherwise just reproduces the input prefixed withline numbers as output.
Try: runprocess countEcho 0

Solution Hints

countEcho (count, input) $=($ count', shows count' (' ' : input) $)$
where count' = succ count
(c) Define a transition function

```
trAdd :: Transition Integer String String
```

that uses the prelude functions read and show to add the Integer reading of the input to the accumulating state, and outputs that state as a string.
Try: runprocess trAdd 0

Solution Hints

```
trAdd ( s, input) = ( s', show s')
    where
        n= read input
        s' = s + n
```

(d) Define a transition function
polish :: Transition [Integer] String String
that implements a reverse Polish notation calculator by pushing number inputs on the stack, always outputing the top of the stack (if present), and interpreting $+,-, *, /$ as taking their arguments
from the stack and pushing the result back onto the stack.
Try: runprocess polish []

Solution Hints

polish $(n: m: k s, "+")=(k: k s$, show $k)$ where $k=m+n$
polish $(n: m: k s, "-")=(k: k s$, show $k)$ where $k=m-n$
polish $(n: m: k s, " * ")=(k: k s$, show $k)$ where $k=m * n$
polish ($n: m: k s, " / ")=(k: k s$, show k) where $k=m$ 'div' n
polish ($k s \quad$, input $)=(k: k s$, show $k)$ where $k=$ read input

