McMaster University
Department of Computing and Software
Dr. W. Kahl

SFWR ENG 3E03
Exercise Sheet 4
Solution Hints

Design and Selection of Programming Languages

5 October 2006

Exercise 4.1

Assume the following Haskell definitions:
size $=10$
square $n=n^{*} n$
Add a definition for cube with the obvious meaning, and manually perform single-stepped expression evaluation for the expression "cube size - cube (size - 2)".

Solution Hints

cube $n=n *$ square n
Then:
cube size - cube (size - 2)
$=($ size $*$ square size $)-$ cube $($ size -2$)--$ unfolding cube definition
$=(10 *$ square 10$)-$ cube $(10-2)--$ unfolding size definition
$=(10 *(10 * 10))-$ cube $(10-2)--$ unfolding square definition
$=(10 * 100)-$ cube $(10-2) \quad-$ multiplication
$=1000-$ cube $(10-2) \quad-$ multiplication
$=1000-(10-2) *$ square $(10-2)--$ unfolding cube definition
$=1000-8 *$ square $8 \quad$-- subtraction
$=1000-8 *(8 * 8) \quad--$ unfolding square definition
$=1000-8 * 64 \quad--$ multiplication
$=1000-512 \quad--$ multiplication
= $488 \quad$-- subtraction

Exercise 4.2

Haskell has predefined types Float for single-precision floating point numbers (which we ignore in the following) and Double for double-precision floating point numbers.
Standard mathematical functions like
sqrt, sin, atan :: Double \rightarrow Double
and pi :: Double are also available; $x^{\wedge} k$ stands for x^{k} if k is natural; $x * * q$ can be used for x^{q} where both x and q are of type Double.
Define the following Haskell functions, with the meanings obvious from their names:
(a) sphereVolume :: Double \rightarrow Double
(b) sphereSurface :: Double \rightarrow Double
(c) centuryToPicosecond :: Integer \rightarrow Integer

Try the last one in C or Java, too; test both, and compare the results

Solution Hints

Introduce auxiliary constants or functions at least for (c)!

```
sphereVolume :: Double -> Double
sphereVolume r = 4/3 * pi * r ^ 3
sphereSurface :: Double -> Double
sphereSurface r = 4 * pi * r^2
centuryToPicosecond :: Integer -> Integer
centuryToPicosecond c = c * daysPerCentury * 24 * 3600 * 10 ^ 12
daysPerCentury, daysPerYear, leapYearsPerCentury :: Integer
daysPerCentury = 100 * daysPerYear + leapYearsPerCentury
leapYearsPerCentury = 24
daysPerYear = 365
```

(This does not take leap-seconds into account.)
In C or Java, some extra effort would be required to make this work with some integral type, since:
Main> centuryToPicosecond 1
3155673600000000000000
Main> 2 ^ 64
18446744073709551616

Exercise 4.3

Define the following Haskell functions:
(a) stutter :: [a] \rightarrow [a]
duplicates each element of its argument lists, e.g.: \quad stutter $[1,2,3]=[1,1,2,2,3,3]$
Solution Hints
stutter :: [a] -> [a]
stutter [] = []
stutter (x:xs) $=x: x$: stutter $x s$
(b) splits :: $[a] \rightarrow[([a],[a])]$
delivers for each argument list all possibilities to segment it into non-empty prefix and suffix, e.g.:
splits $[1,2,3]=[([1],[2,3]),([1,2],[3])]$
(The order is irrelevant.)

Solution Hints

-- most "natural":
splits [] = []

```
splits [x] = []
splits (x:xs) = ([x],xs) : map (pupd1 (x:)) (splits xs)
    -- = ([x],xs) : [ (x:pre, suff) | (pre,suff) <- splits
xs ]
pupd1 f (x,y) = (f x, y)
-- much less efficient:
splits' [] = []
splits' (x : xs) = spl [x] xs
    where
        spl ys [] = []
        spl ys (xs@(x : xs')) = (ys, xs) : spl (ys ++ [x]) xs'
-- roughly equally inefficient:
splits" xs = map (flip splitAt xs) [1 .. length xs - 1]
(c) rotations :: [a] \(\rightarrow\) [ a]]
```

delivers for each argument list all different results of rotations, each result only once, e.g.:
rotations $[1,2,3]=[[1,2,3],[3,1,2],[2,3,1]]$
(The order is irrelevant.)

Solution Hints

```
rotations :: [a] -> [[a]]
rotations xs = xs : map (uncurry (flip (++))) (splits xs)
        -- = xs : [ suff ++ pre | (pre, suff) <- splits xs ]
rotations' xs = r [] xs
    where
        r ys [] = [ys]
        r ys xs@(x : xs') = (xs ++ ys) : r (ys ++ [x]) xs'
```

(d) permutations :: [a] \rightarrow [[a]]
delivers for each argument list all different results of permutations, each result only once, e.g.:
permutations $[1,2,3]=[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]$
(The order is irrelevant.)

Solution Hints

```
permutations :: [a] -> [[a]]
permutations [] = [[]]
permutations xs =
    concat [ map (y:) (permutations ys) | (y : ys) <- rotations
xs ]
permutations' [] = [[]]
```

```
permutations' xs = concatMap permAux (rotations xs)
    where
        permAux (y : ys) = map (y:) (permutations ys)
```


Exercise 4.4 - Defining Haskell Functions (40% of Midterm 1, 2003)

Define the follwing Haskell functions (the solutions are independent of each other):
(a) polynomial :: [Double] \rightarrow Double \rightarrow Double
such that for coefficients $c_{0}, c_{1}, c_{2}, \ldots, c_{n}$ and any x the following holds:

$$
\text { polynomial }\left[c_{0}, c_{1}, c_{2}, \ldots, c_{n}\right] x=c_{0}+c_{1} \cdot x+c_{2} \cdot x^{2}+\cdots+c_{n} \cdot x^{n}
$$

e.g.: polynomial $[3,4,5] 100.0=50403.0$

Hint: Use Horner's rule:

$$
c_{0}+c_{1} \cdot x+c_{2} \cdot x^{2}+\cdots+c_{n} \cdot x^{n}=c_{0}+x \cdot\left(c_{1}+x \cdot\left(c_{2}+\cdots+x \cdot\left(c_{n}\right) \cdot \cdots\right)\right)
$$

Solution Hints

polynomial, polynomial1, polynomial2, polynomial3 :: [Double] -> Double -> Double polynomial [] $x=0$
polynomial ($c: c s$) $x=c+x^{*}$ polynomial cs x
polynomial1 cs $x=$ foldr $\left(\backslash c r->c+x^{*} r\right) 0 c s$
polynomial2 cs $x=$ foldr $\left(\backslash c->(c+) .\left(x^{*}\right)\right) 0$ cs
polynomial3 cs $x=$ foldr $\left(\left(.\left(x^{*}\right)\right) \cdot(+)\right) 0$ cs
If we swap the argument order, we can easily abstract away cs. The " λ-lifting" of the argument to foldr however leads to rather unreadable code, presented here as a puzzle: Do the transformations leading there yourself!
polynomial4 :: Double -> [Double] -> Double
polynomial4 $x=$ foldr $\left(\left(.\left(x^{*}\right)\right) \cdot(+)\right) 0$
(b) findJump :: Integer \rightarrow [Integer $] \rightarrow$ (Integer, Integer)
takes an integer d and a list and returns the first pair of adjacent elements of the list such that the values of these two elements are farther than d apart, e.g.,
findJump 3 [2,3,4,2,5,3,6,2,3,5,4,1,6] $=(6,2)$
If the list contains no such values, an error is produced.

Solution Hints

findJump :: Integer \rightarrow [Integer] \rightarrow (Integer, Integer)
findJump d [] = error "findJump: empty list"
findJump $d[x]=$ error "findJump: singleton list"
findJump $d(x: x s \cong(y: y s))=$ if $a b s(x-y)>d$
then (x, y)
else findJump $d x s$
(c) suffixes :: [a] \rightarrow [[a]]
delivers for each argument list all its suffixes, e.g.:
suffixes $[1,2,3,4]=[[1,2,3,4],[2,3,4],[3,4],[4],[]]$
(The order is irrelevant.)

Solution Hints

suffixes :: [a] \rightarrow [[a]]
suffixes [] = [[]]
suffixes $x s \cong(y: y s)=x s$: suffixes $y s$
(d) diagonal :: [[a]] \rightarrow [a]
interprets its argument as a matrix (represented as in Exercise 2.1), which may be assumed to be square, and returns the main diagonal of that matrix, e.g.:
diagonal $[[1,2,3],[4,5,6],[7,8,9]]=[1,5,9]$

Solution Hints

diagonal, diagonal' $::[[a]] \rightarrow[a]$
diagonal [] = []
diagonal ([]:xss) = error "not square"
diagonal ($(x: x s): x s s)=x$: diagonal (map tail $x s s$)
diagonal' $=$ zipWith ((head . $) \circ$ drop $)$ [0..]
Discuss the use of head in the variant diagonal'!
(e) isSquare :: [[a]] \rightarrow Bool
determines whether its argument corresponds to a list-of-lists representation (as in Exercise 2.1) of a square matrix.

Solution Hints

The following works only for finite lists of finite lists:
isSquare, isSquare' :: [[a]] \rightarrow Bool
isSquare $x s=$ all (((length xs) \equiv)。length $) x$ s
isSquare' $x s=$ all $(($ length $x s) \equiv)($ map length xs $)$
(It is undecidable whether an inifinite list of lists has only infinite element lists.)

Exercise 4.5 - Haskell Evaluation (30\% of Midterm 1, 2003)

Assume the following Haskell definitions to be given:

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f e [] = e
foldr f e (x:xs) = f x (foldr f e xs)
concat = foldr (++) []
(||) :: Bool -> Bool -> Bool -- Boolean disjunction: or
True || = True
False || b = b
any p = foldr ((||) . p) False
gen f (x,s) = x : gen f (f x s)
foo k n = (k + n, n + 2)
```

Simulate Haskell evaluation for the following expressions (write down the sequence of intermediate expressions):
(a) foldr (*) 1 [6,7]
(b) any (> 0) (gen foo (0,1))

Solution Hints

foldr $(*) 1[6,7]$
$=6 *\left(\right.$ foldr ${ }^{(*)} 1$ [7])
$=6 *\left(7 *\left(\right.\right.$ foldr $\left.\left.\left(^{*}\right) 1[]\right)\right)$
$=6 *(7 * 1)$
$=6 * 7 \quad--\mathrm{X}$
$=42$
any $(>0)($ gen foo $(0,1))$
$=$ foldr $((\|) .(>0))$ False (gen foo $(0,1))$
$=$ foldr $((\|) \cdot(>0))$ False $(0$: gen foo (foo 01$))$
$=((\|) \cdot(>0)) 0($ foldr $((\|) \cdot(>0))$ False (gen foo (foo 01$)))$
$=(\|)((>0) 0)($ foldr $((\|) .(>0))$ False $($ gen foo $($ foo 01$)))$
$=(\|)(0>0)($ foldr $((\|))(>0))$ False $($ gen foo $(f o o l 1)))-$ X
$=(\|)$ False (foldr $((\|) .(>0))$ False (gen foo (foo 01$)))$
$=$ foldr $((\|) .(>0))$ False (gen foo (foo 01$)$)
$=$ foldr $((\|) .(>0))$ False $($ gen foo $(0+1,1+2))$
$=$ foldr $((\|) .(>0))$ False $((0+1):$ gen foo $($ foo $(0+1)(1+2)))$
$=((\|) \cdot(>0))(0+1)($ foldr $((\|) \cdot(>0))$ False $($ gen foo $($ foo $(0+1)(1+2))))$
$=(\|)((>0)(0+1))($ foldr $((\|) \cdot(>0))$ False (gen foo $($ foo $(0+1)(1+2))))$
$=(\|)((0+1)>0)($ foldr $((\|) \cdot(>0))$ False $($ gen foo $($ foo $(0+1)(1+2))))--X$
$=(\|)(1>0)($ foldr $((\|) .(>0))$ False $($ gen foo $($ foo $1(1+2))))$
$=(\|)$ True $($ foldr $((\|) \cdot(>0))$ False (gen foo $($ foo $1(1+2))))$
$=$ True

Exercise 4.6 - Defining Haskell Functions (20% of Midterm 1, 2004)

Define the follwing Haskell functions (the solutions are independent of each other):
(a) sum :: [Integer] \rightarrow Integer
such that sum xs evaluates to the sum of all elements of the list xs.
(b) all :: $(a \rightarrow B o o l) \rightarrow[a] \rightarrow$ Bool
such that all p xs evaluates to True if p considered as a predicate holds for all elements of x, and to False if there is at least one element in $x s$ for which p does not hold.
E.g., all (>1) [2..10] = True
(c) selMod :: Integer \rightarrow [Integer] \rightarrow [Integer]
such that selMod $k x s$ selects from the list $x s$ all those elements that are equivalent to k modulo $k+1$, e.g.,
selMod $2[2,3,8,1,2,5]=[2,8,2,5]$
(d) sources :: Eq $a \Rightarrow[(a, a)] \rightarrow[a]$
such that sources ps returns the sources of the graph ps.
Here, the list $p s$ of pairs is considered as representing a simple graph by representing each edge from node x to node y by the pair (x, y).
The context "Eq $a \Rightarrow$ " just means that you may use the equality test for elements of type a, i.e., (==) :: $a \rightarrow a \rightarrow$ Bool.

Example: sources $[(2,3),(3,4),(1,4),(1,5),(2,5)]=[2,1]$
(The order is irrelevant.)

Solution Hints

```
sum = foldl (+) 0
sum = foldr (+) 0
sum [] = 0
sum(x:xs) = x + sum xs
all = foldr (&&) True
all p [] = True
all p(x:xs) = px&& all pxs
seIMod :: Integer }->\mathrm{ [ Integer] }->\mathrm{ [ Integer]
selMod k xs = [ x | x\leftarrowxs, x 'mod' (k+1) \equivk]
sources, sources' :: Eq a m [(a,a)]->[a]
```

sources ps $=$ let (srcs, trgs) $=$ unzip ps in filter ('notElem' trgs) srcs
sources' $p s=$ let trgs $=[$ snd $p \mid p \leftarrow p s]$ in $=[x \mid(x, y) \leftarrow p s, x$ 'notElem' trgs $]$

