
McMaster University
Department of Computing and Software

Dr. W. Kahl

SFWR ENG 3E03
Exercise Sheet 4

Design and Selection of Programming Languages

5 October 2006

Exercise 4.1

Assume the following Haskell definitions:

size = 10
square n = n * n

Add a definition for cube with the obvious meaning, and manually perform single-stepped
expression evaluation for the expression “cube size - cube (size - 2)”.

Exercise 4.2

Haskell has predefined typesFloat for single-precision floating point numbers (which we ignore in
the following) andDouble for double-precision floating point numbers.

Standard mathematical functions like

sqrt , sin , atan : : Double → Double

andpi : : Double are also available;x ^ k stands for kx if k is natural;x ∗∗ q can be used forqx where
both x andq are of typeDouble.

Define the following Haskell functions, with the meanings obvious from their names:

(a) sphereVolume : : Double → Double

(b) sphereSurface : : Double → Double

(c) centuryToPicosecond : : Integer → Integer

Try the last one in C or Java, too; test both, and compare the results

Exercise 4.3

Define the following Haskell functions:

(a) stutter : : [a] → [a]

duplicates each element of its argument lists, e.g.:stutter [1,2 ,3] = [1,1,2 ,2 ,3 ,3]

(b) splits : : [a] → [([a] , [a])]

delivers for each argument list all possibilities to segment it into non-empty prefix and
suffix, e.g.:

splits [1,2 ,3] = [([1] , [2 ,3]) , ([1,2] , [3])]

(The order is irrelevant.)

(c) rotations : : [a] → [[a]]

delivers for each argument list all different results of rotations, each result only once, e.g.:

rotations [1,2 ,3] = [[1,2 ,3] , [3 ,1,2] , [2 ,3 ,1]]

(The order is irrelevant.)

(d) permutations : : [a] → [[a]]

delivers for each argument list all different results of permutations, each result only once, e.g.:

permutations [1,2 ,3] = [[1,2 ,3] , [1,3 ,2] , [2 ,1,3] , [2 ,3 ,1] , [3 ,1,2] , [3 ,2 ,1]]

(The order is irrelevant.)

Exercise 4.4 — Defining Haskell Functions (40%of Midterm 1, 2003)

Define the follwing Haskell functions (the solutions are independent of each other):

(a) polynomial : : [Double] → Double → Double

such that for coefficientsc0, c1, c2, …, cn and anyx the following holds:

polynomial [c0, c1, c2, …, cn] x = c0 + c1 ⋅ x + c2 ⋅ 2x + ⋅ ⋅ ⋅ + cn ⋅ nx

e.g.: polynomial [3 ,4 ,5] 100.0 = 50403.0

Hint: Use Horner’s rule:

c0 + c1 ⋅ x + c2 ⋅ 2x + ⋅ ⋅ ⋅ + cn ⋅ nx = c0 + x ⋅ (c1 + x ⋅ (c2 + ⋅ ⋅ ⋅ + x ⋅ (cn)⋅ ⋅ ⋅))

(b) findJump : : Integer → [Integer] → (Integer , Integer)

takes an integerd and a list and returns the first pair ofadjacentelements of the list such that
the values of these two elements are farther thand apart, e.g.,

findJump 3 [2 ,3 ,4 ,2 ,5 ,3 ,6 ,2 ,3 ,5 ,4 ,1,6] = (6 ,2)

If the list contains no such values, an error is produced.

(c) suffixes : : [a] → [[a]]

delivers for each argument list all its suffixes, e.g.:

suffixes [1,2 ,3 ,4] = [[1,2 ,3 ,4] , [2 ,3 ,4] , [3 ,4] , [4] , []]

(The order is irrelevant.)

(d) diagonal : : [[a]] → [a]

interprets its argument as a matrix (represented as in Exercise 2.1), which may be assumed to be
square, and returns the main diagonal of that matrix, e.g.:

diagonal [[1,2 ,3] , [4 ,5 ,6] , [7 ,8 ,9]] = [1,5 ,9]

(e) isSquare : : [[a]] → Bool

determines whether its argument corresponds to a list-of-lists representation (as in Exercise 2.1)
of a square matrix.

Exercise 4.5 — Haskell Evaluation (30%of Midterm 1, 2003)

Assume the following Haskell definitions to be given:

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f e [] = e
foldr f e (x:xs) = f x (foldr f e xs)

concat = foldr (++) []

(||) :: Bool -> Bool -> Bool − − Boolean disjunction: or
True || _ = True
False || b = b

any p = foldr ((||) . p) False

gen f (x,s) = x : gen f (f x s)

foo k n = (k + n, n + 2)

Simulate Haskell evaluation for the following expressions (write down the sequence of intermediate
expressions):

(a) foldr (*) 1 [6,7]

(b) any (> 0) (gen foo (0,1))

Exercise 4.6 — Defining Haskell Functions (20%of Midterm 1, 2004)

Define the follwing Haskell functions (the solutions are independent of each other):

(a) sum : : [Integer] → Integer

such thatsum xs evaluates to the sum of all elements of the listxs.

(b) all : : (a → Bool) → [a] → Bool

such thatall p xs evaluates toTrue if p considered as a predicate holds for all elements ofx,
and toFalse if there is at least one element inxs for which p does not hold.

E.g., all (> 1) [2..10] = True

(c) selMod : : Integer → [Integer] → [Integer]

such thatselMod k xs selects from the listxs all those elements that are equivalent tok modulo
k + 1, e.g.,

selMod 2 [2 , 3 , 8 , 1, 2 , 5] = [2 , 8 , 2 , 5]

(d) sources : : Eq a ⇒ [(a ,a)] → [a]

such thatsources ps returns thesources of the graphps.

Here, the listps of pairs is considered as representing a simple graph by representing each edge
from nodex to nodey by the pair(x ,y).

Thecontext “ Eq a ⇒ ” just means that you may use the equality test for elements of typea,
i.e., (==) : : a → a → Bool.

Example:sources [(2 ,3) , (3 ,4) , (1,4) , (1,5) , (2 ,5)] = [2 ,1]

(The order is irrelevant.)

