
SE3E03, 2006 2.349 499

Side Effects and Haskell

• Haskell ispure:

– Evaluating expressions hasno side-effects

– Expressions are evaluated only for obtaining theirvalues

• But sometimes we want our programs to affect the real world
(printing, controlling a robot, drawing a picture, etc).

How do we reconcile these two aspects?

In Haskell, certain “pure values” are “worldly actions” that can beperformed

– Types: An expression with typeIO a has as its value acomputation (in the
IO-monad) that can be understood as returning a value of typea.

Alternative explanation: An expression with typeIO a has possibleactions
associated with its execution, while returning a value of typea

– Syntax: Thedo syntax sequences several actions (using layout)

SE3E03, 2006 2.354 504

The do Syntax

main = do −− Users.hs

s ← readFile "/etc/passwd"

putStrLn $ "/etc/passwd has " ++ show (length s) ++ " characters"

let logins = map (takeWhile (’:’ ≠)) $ lines s

putStrLn $ "There are " ++ show (length logins) ++ " logins"

let funny = filter (all (‘notElem‘ "AEIOUaeiou")) logins

putStrLn $ unwords $ "Funny logins:" : funny

• readFile "/etc/passwd" : : IO String is an action.

• We use thedo syntax to bind the result of that action to the variables, and
sequence this action with other actions that depend ons.

• Insidedo, one may writelet without in.

SE3E03, 2006 2.366 516

When IO Actions are Performed

An expression with typeIO a has as its value acomputation that, when
performed, may return a value of typea.

• A value of typeIO a is anaction, but it is still avalue: it will only have aneffect
when it isperformed.

• In Haskell, a program’s value is the value of the variablemain in the module
Main.

That value has to have typeIO a.

It will be performed upon execution of the program.

• In Hugs and GHCi, you can type any expression to the prompt.

If the expression has typeIO a it will be performed; otherwise its value will
be printed on the display.

SE3E03, 2006 2.374 524

Predefined IO Actions

−− write a string to terminal (without/with adding a newline)
putStr , putStrLn : : String → IO ()

putChar : : Char → IO () −− write one character to terminal

getChar : : IO Char −− get one character from keyboard

getLine : : IO String −− get a whole line from keyboard

readFile : : FilePath → IO String −− read a file as aString

writeFile : : FilePath → String → IO () −− write a String to a file

With “ import System”:

getArgs : : IO [String] −− obtain command-line arguments

getProgName : : IO String −− obtain program name

getEnv : : String → IO String −− get environment variable value

system : : String → IO ExitCode −− run command

SE3E03, 2006 2.375 525

IO Example

import qualified System −− Cat.hs

main = do
args ← System .getArgs

putStrLn (shows (length args) " arguments")
let (flags , files) = span (("-" ≡) ° take 1) args

print flags

mapM (λ file → readFile file >>= putStrLn) files

Compile and run:

ghc --make -o Cat Cat.hs

./Cat -flag1 -q -v -flag4 file1 qwerty -what file4

SE3E03, 2006 2.376 526

Another IO Example

module Main (main) where −− this is the default module header --- WC.hs

main = do
line ← getLine

let ws = words line

case ws of
[] → return ()
_ → do
putStrLn ("You entered " ++ show (length ws) ++ " words")
main

Compile and run:

ghc --make -o WC WC.hs

./WC

SE3E03, 2006 2.377 527

Adding Line Numbers

module Main (main) where −− WC2.hs

main = count 1

count : : Integer → IO ()
count n = do
line ← getLine

let ws = words line

case ws of
[] → return ()
_ → do
putStrLn ("Line " ++ show n ++ " has " ++ show (length ws) ++ " words")
count (n + 1)

The “state” is managed as argument of aparameterised action.

SE3E03, 2006 2.379 529

Catching I/O Exceptions

catch is not a keyword, but a prelude function:

catch : : IO a → (IOError → IO a) → IO a

Example:

main = do −− Catch.hs
s1 ← catch (readFile "infile1")

(λ e → do
putStrLn $ "Error reading infile1: " ++ show e
return "")

s2 ← readFile "infile2"
‘catch‘ λ e → do

putStrLn $ "Error reading infile2: " ++ show e
return ""

writeFile "outfile" (s1 ++ s2)
‘catch‘ λ e → putStrLn $ "Error writing outfile: " ++ show e

putStrLn "Finished"

SE3E03, 2006 2.380 530

Recursive Actions with Results —getLine

getLine can be defined recursively in terms of simpler actions:

getLine :: IO String

getLine =

do c <- getChar − − get a character
if c == ’\n’ − − if it’s a newline

then return "" − − then return empty string
else do l <- getLine − − otherwise get rest of

− − line recursively,
return (c:l) − − and return entire line

The function return : : a → IO a takes a value of typea, and turns it into an action
of type IO a, which does nothing but return the value.

