Exercise: Positional List Splitting

- take :: Int \rightarrow [a] \rightarrow [a]
take, applied to a $k:: I n t$ and a list $x s$, returns the longest prefix of $x s$ of elements that has no more than k elements.
- drop :: Int \rightarrow [a] \rightarrow [a]
drop $k x s$ returns the suffix remaining after take $k x s$.

Laws:

- take k xs + drop $k x s=x s$
- length (take $k x s) \leq k$

Note: splitAt $k x s=($ take $k x s$, drop $k x s)$

Guarded Definitions

```
sign x | x> 0 = 1 
choose :: Ord a=>(a,b)->(a,b)->b
choose (x,v) (y,w)
    | x>y = v
    |<y = w
    | otherwise = error "I cannot decide!"
```

If no guard succeeds, the next pattern is tried:

```
take 0_ = []
take k_| | k < 0 = error "take: negative argument"
take k [] = []
take k (x:xs) = x: take (k-1) xs
take 2[5, 6, 7] = take 2(5:6:7:[])
= 5: take (2-1) (6:7 [ [])
= 5: take 1(6:7:[])
= 5:6:take (1-1)(7:[])
= 5:6: take 0 (7:[])
= 5:6:[]
    =[5,6]
```


where Clauses

If an auxiliary definition is used only locally, it should be inside a local definition, e.g.:
commaWords :: [String] \rightarrow String
commaWords [] = []
commaWords ($x: x s$) $=x+$ commaWordsAux $x s$

where

commaWordsAux [] = []
commaWordsAux xs = ", " : commaWords xs
where clauses are visible only within their enclosing clause, here "commaWords $(x: x s)=. . . "$
where clauses are visible within all guards:

$\mathrm{f} x \mathrm{y} |$| $\mathrm{y}>\mathrm{z}=\ldots$ |
| :--- |
| $\mathrm{y}==\mathrm{z}=\ldots$ |
| $\mathrm{y}<\mathrm{z}=\ldots$ |

where $\mathrm{z}=\mathrm{x} * \mathrm{x}$

let Expressions

Local definitions can also be part of expressions:

$$
\begin{aligned}
& \mathrm{f} \mathrm{k} \mathrm{n}=\text { let } \mathrm{m}=\mathrm{k} \text { 'mod' } \mathrm{n} \\
& \text { in if } m=0 \\
& \text { then } n \\
& \text { else } f \mathrm{n} m \\
& \mathrm{~h} x \mathrm{y}=\text { let } \mathrm{x} 2=\mathrm{x} * \mathrm{x} \\
& \mathrm{y}^{2}=\mathrm{y}^{\star} \mathrm{y} \\
& \text { in sqrt }\left(x^{2}+y^{2}\right)
\end{aligned}
$$

Definitions can use pattern bindings:

$$
\begin{aligned}
\mathrm{g} \mathrm{k} \mathrm{n}= & \text { let }(\mathrm{d}, \mathrm{~m})=\text { divMod } \mathrm{k} \mathrm{n} \\
& \text { in } \operatorname{if~} \mathrm{d}=0 \\
& \text { then }[\mathrm{m}] \\
& \quad \text { else } g \mathrm{~d} \mathrm{n}++[\mathrm{m}]
\end{aligned}
$$

Guards, let and where bindings, and case cases all are layout sensitive!

```
if ... then ... else ... and case Expressions
```

The type Bool can be considered as a two-element enumeration type:

data Bool = False | True

Conditional expressions are "syntactic sugar" for case expressions over Bool:

$$
\begin{gathered}
\text { if } \text { condition } \\
\text { then expr1 } \\
\text { else expr2 }
\end{gathered} \equiv \begin{array}{|l|}
\text { case condition of } \\
\text { True } \rightarrow \text { expr1 } \\
\text { False } \rightarrow \text { expr2 }
\end{array}
$$

Two ways of defining functions:

Pattern Matching

```
not True = False
```

not False = True
case

```
not b = case b of
    True }->\mathrm{ False
    False }->\mathrm{ True
```

case Expressions
sign $x=$ case compare x 0 of
GT $\rightarrow 1$
EQ $->0$
LT $->-1$

The prelude datatype Ordering has three elements and is used mostly as result type of the prelude function compare:

```
data Ordering = LT | EQ|GT
```

compare $::$ Ord $a \Rightarrow a \rightarrow a \rightarrow$ Ordering

Another example:

```
choose ( }x,v)(y,w)=\mathrm{ case compare }xy\mathrm{ of
    GT }->
    LT->w
    EQ -> error "I cannot decide!"
```


Some Prelude Functions - Elementary List Access

head head ($x:$ _)	$\begin{aligned} & :: \quad[a] \quad->a \\ & =x \end{aligned}$
last	:: [a] -> a
last [x]	x
last (_:xs)	$=$ last xs
tail	:: [a] -> [a]
tail (_:xs)	= xS
init	:: [a] -> [a]
init [x]	= []
init (x:xs)	= x : init xs
null	:: [a] -> Bool
null []	= True
null (_:_)	= False

Some Prelude Functions — Positional List Splitting

```
take :: Int -> [a] -> [a]
take 0 _ = []
take _ [] = []
take n (x:xs) | n>0 = x : take (n-1) xs
take _ = error "take: negative argument"
drop :: Int -> [a] -> [a]
drop 0 xs = xs
drop - [] = []
drop n (_:xs) | n>0 = drop (n-1) xs
drop _ _ = error "drop: negative argument"
splitAt :: Int -> [a] -> ([a], [a])
splitAt 0 xs = ([],xs)
splitAt - [] = ([],[])
splitAt n (x:xs) | n>0 = (x:xs',xs')
wplitAt _ _ where (x\mp@subsup{s}{}{\prime},x\mp@subsup{s}{}{\prime\prime})= splitAt (n-1) xs
```

${ }^{321}$

Some Prelude Functions - Concatenation, Iteration

```
(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)
concat :: [[a]] -> [a]
concat = foldr (++) []
```



```
repeat :: a -> [a]
repeat x = xs where xs = x:xs
{- repeat x = x : repeat }\textrm{x}-}\quad--\mathrm{ for understanding
replicate :: Int -> a -> [a]
replicate n x = take n (repeat x)
cycle :: [a] -> [a]
cycle xs = xs' where xs' = xs ++ xs'
```


Separation of Concerns: Generation and Consumption

```
replicate 3 '!'
= take 3 (repeat '!') -- replicate
= take 3 ('!' : repeat '!') -- repeat
= '!' : take (3 - 1) (repeat '!') -- take (iii)
= '!' : take 2 (repeat '!') -- subtraction
= '!' : take 2 ('!' : repeat '!') -- repeat
= '!' : '!' : take (2 - 1) (repeat '!') -- take (iii)
= '!' : '!' : take 1 (repeat '!') -- subtraction
= '!' : '!' : take 1 ('!' : repeat '!') -- repeat
= '!' : '!' : '!' : take (1 - 1) (repeat '!') - - take (iii)
= '!' : '!' : '!' : take 0 (repeat '!') -- subtraction
= '!' : '!' : '!' : [] -- take (i)
= "!!!"
```


Exercise: Splitting with Predicates

- takeWhile $::(a \rightarrow$ Bool $) \rightarrow[a] \rightarrow[a]$
takeWhile, applied to a predicate p and a list $x s$, returns the longest prefix (possibly empty) of $x s$ of elements that satisfy p.
- dropWhile $::(a \rightarrow B o o l) \rightarrow[a] \rightarrow[a]$
dropWhile p xs returns the suffix remaining after takeWhile $p x s$.

Laws:

- takeWhile p xs + dropWhile $p x s=x s$
- all p (takeWhile $p x s)=$ True
- null (dropWhile p xs) \| p (head (dropWhile $p x s)$)
—if p is total (on $x s$).
Note: span p xs $=($ takeWhile $p x s$, dropWhile $p x s)$

Exercise: zipWith

- zip :: $[a] \rightarrow[b] \rightarrow[(a, b)]$
zip takes two lists and returns a list of corresponding pairs. If one input list is short, excess elements of the longer list are discarded.
- zipWith : : $(a \rightarrow b \rightarrow c) \rightarrow[a] \rightarrow[b] \rightarrow[c]$
zipWith generalises zip by zipping with the function given as the first argument, instead of a tupling function. For example, zipWith (+) is applied to two lists to produce the list of corresponding sums.
- diagonal $::[[a]] \rightarrow[a]$
interprets its argument as a matrix, which may be assumed to be square, and returns the main diagonal of that matrix, e.g.:
diagonal $[[1,2,3],[4,5,6],[7,8,9]]=[1,5,9]$

Some Prelude Functions - List Splitting with Predicates

```
takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs)
    | p x l = x : takeWhile p xs
        otherwise = []
dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs')
        p x = dropWhile p xs'
        otherwise = xs
span, break :: (a -> Bool) -> [a] -> ([a],[a])
span p [] = ([],[])
span p xs@(x:xs')
        p x = let (ys,zs) = span p xs' in (x:ys,zs)
        otherwise = ([],xs)
break p = span (not . p)
```


as-Patterns

```
dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs')
        p x = dropWhile p xs'
        otherwise = xs
```

Consider matching of the third clause against dropWhile (<5) [1,2,3]:

- $p=(<5)$
- $x s=[1,2,3]$
- $x=1$
- $x s^{\prime}=[2,3]$
- $p x=(<5) 1=1<5=$ True

Therefore: dropWhile $(<5)[1,2,3]=$ dropWhile $(<5)[2,3]$

as-Patterns - 2

```
dropWhile :: (a -> Bool) -> [a] -> [a
```

dropWhile :: (a -> Bool) -> [a] -> [a
dropWhile p [] = []
dropWhile p [] = []
dropWhile p xs@(x:xs')
dropWhile p xs@(x:xs')
p x = dropWhile p xs'
p x = dropWhile p xs'
otherwise = xs

```
otherwise = xs
```

Consider matching of the third clause against dropWhile $(<5)[5,4,3]$:

- $p=(<5)$
- $x s=[5,4,3]$
- $x=5$
- $x s^{\prime}=[4,3]$
- $p x=(<5) 5=5<5=$ False

Therefore: dropWhile $(<5)[5,4,3]=[5,4,3]$

What We Have Seen So Far

- Functional programming: Higher-order functions, functions as arguments and results
- Type systems: type constants and type constructors, parametric polymorphism (type variables), type inference
- Operator precedence rules: juxtaposition as operator, "associate to the left/right"
- Argument passing: not by value or reference, but by name
- Powerful datatypes with simple interface: Integer, lists, lists of lists of ...
- Non-local control (evaluation on demand): modularity (e.g., generate / prune)

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural induction:

length $\quad::$ [a] \rightarrow Int	concat : : [[a]] \rightarrow [a]	
length [] $=0$	concat [] = []	
length $(x: x s)=1+$ length x s	concat ($x s: x s s$) $=x s+$ concat $x s s$	
(+) $::$ [a] \rightarrow [a] \rightarrow [a]	sum : : Num $a \Rightarrow[a] \rightarrow a$	
[] + ys $=y s$	sum [] $=0$	
$(x: x s)+y s=x:(x s+y s)$	$\operatorname{sum}(x: x s)=x+\operatorname{sum} x s$	
elem : : Eq a $a \rightarrow a \rightarrow[a] \rightarrow$ Bool	product :: Num $a \rightarrow[a] \rightarrow a$	
x 'elem' [] = False	product []	
x 'elem' ($y: y s$)	product ($x: x s$) $=x *$ product $x s$	
$=x \equiv y \\| x$ 'elem' $y s$		

(All these functions are in the standard prelude.)

Many functions taking lists as arguments can be defined via structural induction:

$=x_{1} \otimes\left(x_{2} \otimes\left(x_{3} \otimes\left(x_{4} \otimes x_{5}\right)\right)\right)$

foldr

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr (\otimes) z [] = z
foldr (\otimes) z (x:xs) = x \otimes (foldr ( \otimes) z xs)
```

foldr $(\otimes) \quad \mathrm{z}\left[\begin{array}{lllll}x_{1}, & x_{2}, & x_{3}, & x_{4}, & x_{5}\end{array}\right]$
$=x_{1} \otimes\left(\right.$ foldr $\left.(\otimes) \quad z \quad\left[\begin{array}{llll}x_{2}, & x_{3}, & x_{4}, & x_{5}\end{array}\right]\right)$
$=x_{1} \otimes\left(x_{2} \otimes\left(\right.\right.$ foldr $\left.\left.(\otimes) \quad z \quad\left[x_{3}, x_{4}, x_{5}\right]\right)\right)$
$=x_{1} \otimes\left(x_{2} \otimes\left(x_{3} \otimes\left(\right.\right.\right.$ foldr $\left.\left.(\otimes) \quad z \quad\left[\begin{array}{lll}x_{4} & x_{5}\end{array}\right]\right)\right)$
$=x_{1} \otimes\left(x_{2} \otimes\left(x_{3} \otimes\left(x_{4} \otimes\left(f o l d r(\otimes) \quad z \quad\left[x_{5}\right]\right)\right)\right)\right)$
$=x_{1} \otimes\left(x_{2} \otimes\left(x_{3} \otimes\left(x_{4} \otimes\left(x_{5} \otimes(f \circ l d r(\otimes) \quad z[])\right)\right)\right)\right.$
$=x_{1} \otimes\left(x_{2} \otimes\left(x_{3} \otimes\left(x_{4} \otimes\left(x_{5} \otimes z\right)\right)\right)\right)$

List Folding

foldr abstracts structural induction over lists!

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xS) = f x (foldr f z xS)
foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 f [x] = x
foldr1 f (x:xs) = f x (foldr1 f xs)
foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs
foldl1 :: (a -> a -> a) -> [a] -> a
foldl1 f (x:xs) = foldl f x xs
```


Lambda-Abstraction

Named functions:
add1 $x=x+1$
recip $x=1 / x$
square $x=x * x$

In " $\lambda x \rightarrow$ body", the variable x is bound.

Typing rule:

If, assuming $x:: a$, we can get body $:: b$, then $(\lambda x \rightarrow$ body $):: a \rightarrow b$
Evaluation rule: β-reduction uses substitution:

$$
(\lambda x \rightarrow \operatorname{bod} y) \text { arg } \rightarrow \operatorname{bod} y[x \mapsto \arg]
$$

Enumeration Type Definitions

```
data Bool = False | True deriving (Eq, Ord, Read, Show)
data Ordering = LT|EQ|GT deriving (Eq,Ord,Read,Show)
data Suit = Diamonds | Hearts | Spades | Clubs deriving(Eq, Ord)
Pattern matching:
not False = True
not True = False
lexicalCombineOrdering :: Ordering }->\mathrm{ Ordering }->\mathrm{ Ordering
lexicalCombineOrdering LT _ = LT
lexicalCombineOrdering EQ x = x
lexicalCombineOrdering GT _ = GT
```


Simple data Type Definitions

data Point $=$ Pt Int Int deriving $(E q) \quad--$ screen coordinates
This defines at the same time a data constructor:
Pt :: Int \rightarrow Int \rightarrow Point
Pattern matching:
addPt $(P t x 1 y 1)(P t x 2 y 2)=P t(x 1+x 2)(y 1+y 2)$

3E03,2006 2.275

Multi-Constructor data Type Definitions

data Transport $=$ Feet
| Bike
| Train Int -- price in cent
This defines at the same time data constructors:
Feet :: Transport
Bike :: Transport
Train :: Int \rightarrow Transport
Pattern matching:
cost Feet $=0$
cost Bike $=0$
cost (Train Int) $=\operatorname{Int}$

Token Type

data Token $=$	Number Integer
	\mid Sep Char
	\mid Ident String deriving (Show)

Constructors:

Number :: Integer \rightarrow Token
Sep :: Char \rightarrow Token
Ident $::$ String \rightarrow Token
Pattern Matching:
showToken (Number n) = "Number" + show n
showToken (Sep c) = "Sep" + show c
showToken (ldent s) = "Ident" + show s
(Defining this as "show :: Token \rightarrow String" is the effect of "deriving (Show ".)

Simple Polymorphic data Type Definitions

The prelude type constructors Maybe, Either, Complex are defined as follows: data Maybe $a=$ Nothing \mid Just $a \quad$ deriving (Eq, Ord, Read, Show)
data Either $a b=$ Left $a \mid$ Right $b \quad$ deriving (Eq, Ord, Read, Show)
data Complex $r=r:+r$ deriving (Eq, Read, Show)
This defines at the same time data constructors:
Nothing :: Maybe a
Just :: a \rightarrow Maybe a

Left : : $a \rightarrow$ Either $a b$
Right $:: b \rightarrow$ Either $a b$
(:+) :: $r \rightarrow r \rightarrow$ Complex r

SE3E03, 20062,315

Abstract Syntax Example - Haskell

Expr \rightarrow Ident \mid Number \mid Expr Op Expr

(Var "c")

Showing Expr

```
data Op = MkOp String
deriving Show
showOp :: Op -> String
showOp(MkOp s)=s
data Expr
    = Var String
    | Num Integer
    | Bin Expr Op Expr
showExpr :: Expr }->\mathrm{ String
showExpr ( Var v) = v
showExpr (Num n) = show n
showExpr ( Bin e1 op e2) =
    '(' : showExpr e1 + showOp op + showExpr e2 + ")"
```

SEEE03,2006 2.324

Exercise: Text Processing

- lines :: String \rightarrow [String]
lines breaks a string up into a list of strings at newline characters. The resulting strings do not contain newlines.
- words :: String \rightarrow [String]
words breaks a string up into a list of words, which were delimited by white space.
- unlines :: [String] \rightarrow String
unlines is an inverse operation to lines. It joins lines, after appending a terminating newline to each.
- unwords :: [String] \rightarrow String
unwords is an inverse operation to words. It joins words with separating spaces.

Some Prelude Functions - Text Processing

```
lines :: String -> [String]
lines "" = []
lines s = let (l, s') = break ('\n'==) s
    in l : case s' of [] -> []
                                    (_:S") -> lines s"
words :: String -> [String]
words s = case dropWhile isSpace s of
    "" -> []
    s' -> w : words s"
        where (w,s") = break isSpace s'
unlines :: [String] -> String
unlines = foldr (\ l r -> l ++ '\n' : r) []
unwords :: [String] -> String
unwords [] = ""
unwords [w] = W
unwords (w:ws) = w ++ ' ' : unwords ws
```

