Exercise: Positional List Splitting

• take :: $Int \rightarrow [a] \rightarrow [a]$

take, applied to a k :: Int and a list xs, returns the longest prefix of xs of elements that has no more than k elements.

• drop :: $Int \rightarrow [a] \rightarrow [a]$

drop k xs returns the suffix remaining after *take k xs*.

Laws:

- take k xs + drop k xs = xs
- length (take k xs) $\leq k$

Note: splitAt k xs = (take k xs, drop k xs)

SE3E03, 2006 2.143

Guarded Definitions

 $sign x \mid x > 0 = 1$ $\mid x == 0 = 0$ $\mid x < 0 = -1$ $choose :: Ord a \Rightarrow (a,b) \rightarrow (a,b) \rightarrow b$ choose (x,v) (y,w) $\mid x > y = v$ $\mid x < y = w$ $\mid otherwise = error "I cannot decide!"$

If no guard succeeds, the next pattern is tried:

take 0 = [] take k = | k < 0 = error "take: negative argument" take k [] = [] take k (x : xs) = x : take (k - 1) xs take 2 [5, 6, 7] = take 2 (5 : 6 : 7 : []) = 5 : take (2 - 1) (6 : 7 : []) = 5 : take 1 (6 : 7 : []) = 5 : 6 : take (1 - 1) (7 : []) = 5 : 6 : take 0 (7 : [])= 5 : 6 : [] = [5, 6] 280

where Clauses

If an auxiliary definition is used only locally, it should be inside a **local definition**, e.g.:

commaWords :: [String] → String commaWords [] = [] commaWords (x : xs) = x ++ commaWordsAux xs where commaWordsAux [] = [] commaWordsAux xs = "," : commaWords xs

where clauses are visible **only** within their enclosing clause, here "commaWords (x : xs) = ..."

where clauses are visible within all guards:

f x y | y > z = ... | y == z = ... | y < z = ... where z = x * x

SE3E03, 2006 2.152

292

let Expressions

Local definitions can also be part of expressions:

Definitions can use **pattern bindings**:

g k n = let (d,m) = divMod k n in if d == 0 then [m] else g d n ++ [m]

Guards, let and where bindings, and case cases all are layout sensitive!

• let *bindings* in *expression*

• fname patterns guardedRHSs where bindings

• (where clauses can also modify case cases)

• where clauses result in a top-down presentation

Frequently, the choice between let and where is a matter of *style*:

• let expressions lend themselves also to bottom-up presentations

is a clause that is part of a **definition**

is an **expression**

if ... then ... else ... and case Expressions

The type Bool can be considered as a two-element enumeration type:

data Bool = False | True

Conditional expressions are "syntactic sugar" for case expressions over Bool:

Two ways of defining functions:

Pattern Matching	case
not True = False	not $b = case b$ of
not False = True	$\mathbf{True} \rightarrow \mathbf{False}$
	$False \rightarrow True$

SE3E03, 2006 2,161

case Expressions

let or where?

sign x = case compare x 0 of GT -> 1 EQ -> 0 LT -> -1

The prelude datatype *Ordering* has three elements and is used mostly as result type of the prelude function *compare*:

data $Ordering = LT \mid EQ \mid GT$

compare :: Ord $a \Rightarrow a \rightarrow a \rightarrow$ Ordering

Another example:

```
choose (x, v) (y, w) = case compare x y of

GT \rightarrow v

LT \rightarrow w

EQ \rightarrow error "I cannot decide!"
```

SE3E03, 2006 2.168

310

case Expressions are "Anonymous" Pattern Matching

commaWords :: [String] \rightarrow String commaWords [] = [] commaWords (x : xs) = x + case xs of [] \rightarrow [] _ \rightarrow "," : commaWords xs

Every use of a case expression can be transformed into the use of an auxiliary function defined by pattern matching:

commaWords :: [String] \rightarrow String commaWords [] = [] commaWords (x : xs) = x + commaWordsAux xs

commaWordsAux [] = []
commaWordsAux xs = ", " : commaWords xs

Some Prelude Functions — Positional List Splitting

head	:: [a] -> a	take :: Int -> [a] -> [a]
head (x:_)		take 0 = $[]$
110000 (11 <u>_</u>)		take [] = []
last	:: [a] -> a	take n (x:xs) $n>0 = x$: take (n-1) xs
last [x]	= x	take = error "take: negative argument"
last (_:xs)	= last xs	
		drop :: Int -> [a] -> [a]
tail	:: [a] -> [a]	drop 0 xs = xs
tail (_:xs)	= xs	drop _ [] = []
		drop n (_:xs) $n>0 = drop (n-1) xs$
init	:: [a] -> [a]	<pre>drop = error "drop: negative argument"</pre>
init [x]	= []	
init (x:xs)	= x : init xs	splitAt :: Int -> [a] -> ([a], [a])
		splitAt 0 xs = ([], xs)
null	:: [a] -> Bool	splitAt _ [] = ([],[])
null []	= True	splitAt n (x:xs) n>0 = (x:xs',xs")
null (_:_)	= False	where $(xs', xs'') = splitAt (n-1) xs$
		<pre>splitAt = error "splitAt: negative argument"</pre>

SE3E03 2006 2 170

Some Prelude Functions — List Indexing

Some Prelude Functions — Elementary List Access

length length		:: [a] - = fold]	<pre>> Int .' (\n> n + 1)</pre>	0
(!!)		:: [b] -	> Int -> b	
(x:_)	!! 0	= x		
(_:xs)	!! n n>0) = xs !!	(n-1)	
(_:_)	!! _	= error	"PreludeList.!!:	negative index"
[]	!! _	= error	"PreludeList.!!:	index too large"

SE3E03 2006 2 172

319

Some Prelude Functions — Concatenation, Iteration

```
(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)
concat :: [[a]] -> [a]
concat = foldr (++) []
iterate :: (a -> a) -> a -> [a]
iterate f x
               = x : iterate f (f x)
repeat
                :: a -> [a]
repeat x
                 = xs where xs = x:xs
{- repeat x
                 = x : repeat x - \} -- for understanding
replicate
                :: Int -> a -> [a]
replicate n x
                = take n (repeat x)
cycle
                :: [a] -> [a]
cycle xs
                 = xs' where xs' = xs + + xs'
```

- .

335

Separation of Concerns: Generation and Consumption

replicate 3 '!'	
= take 3 (repeat '!')	replicate
= take 3 ('!' : repeat '!')	repeat
= '!' : take (3 - 1) (repeat '!')	take (iii)
= '!' : take 2 (repeat '!')	subtraction
= '!' : take 2 ('!' : repeat '!')	repeat
= '!' : '!' : take (2 - 1) (repeat '!')	take (iii)
= '!' : '!' : take 1 (repeat '!')	subtraction
= '!' : '!' : take 1 ('!' : repeat '!')	repeat
= '!' : '!' : '!' : take (1 - 1) (repeat '!')	take (iii)
= '!' : '!' : '!' : take 0 (repeat '!')	– – subtraction
= '!' : '!' : '!' : []	take (i)
= "!!!"	

• $zip :: [a] \rightarrow [b] \rightarrow [(a, b)]$

zip takes two lists and returns a list of corresponding pairs. If one input list is short, excess elements of the longer list are discarded.

• $zipWith :: (a \rightarrow b \rightarrow c) \rightarrow [a] \rightarrow [b] \rightarrow [c]$

zipWith generalises *zip* by zipping with the function given as the first argument, instead of a tupling function. For example, *zipWith* (+) is applied to two lists to produce the list of corresponding sums.

• diagonal :: $[[a]] \rightarrow [a]$

interprets its argument as a matrix, which may be assumed to be square, and returns the main diagonal of that matrix, e.g.:

diagonal [[1,2,3],[4,5,6],[7,8,9]] = [1,5,9]

SE3E03, 2006 2.193

Exercise: Splitting with Predicates

• takeWhile :: $(a \rightarrow Bool) \rightarrow [a] \rightarrow [a]$

takeWhile, applied to a predicate *p* and a list *xs*, returns the longest prefix (possibly empty) of *xs* of elements that satisfy *p*.

• dropWhile :: $(a \rightarrow Bool) \rightarrow [a] \rightarrow [a]$

dropWhile p xs returns the suffix remaining after takeWhile p xs.

Laws:

- takeWhile p xs + dropWhile p xs = xs
- all p (takeWhile p xs) = **True**
- null (dropWhile p xs) || p (head (dropWhile p xs))
- if p is total (on xs).

```
Note: span p xs = (takeWhile p xs, dropWhile p xs)
```

SE3E03, 2006 2.196

342

Some Prelude Functions — List Splitting with Predicates

```
takeWhile
                 :: (a -> Bool) -> [a] -> [a]
takeWhile p []
                  = []
takeWhile p (x:xs)
                  = x : takeWhile p xs
        рх
        otherwise = []
dropWhile
                 :: (a -> Bool) -> [a] -> [a]
dropWhile p []
                  = []
dropWhile p xs@(x:xs')
        рх
                  = dropWhile p xs'
        otherwise = xs
span, break
                 :: (a -> Bool) -> [a] -> ([a],[a])
                  = ([], [])
span p []
span p xs@(x:xs')
                  = let (ys, zs) = span p xs' in (x:ys, zs)
        рх
        otherwise = ([],xs)
break p
                  = span (not . p)
```

dropWhile
dropWhile p []

• p = (<5)

• *x* = 1

• xs = [1,2,3]

• xs' = [2,3]

dropWhile p xs@(x:xs')

• p x = (<5) 1 = 1 < 5 = True

otherwise = xs

рх

What We Have Seen So Far

- **Functional programming:** Higher-order functions, functions as arguments and results
- **Type systems:** type constants and type constructors, parametric polymorphism (type variables), type inference
- **Operator precedence rules:** juxtaposition as operator, "associate to the left/right"
- Argument passing: not by value or reference, but by name
- Powerful datatypes with simple interface: Integer, lists, lists of lists of ...
- **Non-local control** (evaluation on demand): modularity (e.g., generate / prune)

SE3E03, 2006 2.215

as-Patterns — 2

as-Patterns

= dropWhile p xs'

Consider matching of the third clause against *dropWhile* (< 5) [1,2,3]:

= []

:: (a -> Bool) -> [a] -> [a]

Therefore: dropWhile (< 5) [1,2,3] = dropWhile (< 5) [2,3]

Consider matching of the third clause against *dropWhile* (< 5) [5,4,3]:

- p = (< 5)
- xs = [5,4,3]
- *x* = 5

• *x*s' = [4,3]

• p x = (<5) 5 = 5 < 5 = False

Therefore: *dropWhile* (< 5) [5,4,3] = [5,4,3]

SE3E03, 2006 2.235

364

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via **structural induction**:

length :: [a] -	\rightarrow Int	$concat :: [[a]] \rightarrow [a]$
length[] = 0		concat [] = []
length $(x : xs) = 1 +$	length xs	concat (xs : xss) = xs ++ concat xss
$(+)$:: $[a] \rightarrow [a]$	→[a]	sum :: Num $a \Rightarrow [a] \rightarrow a$
[] + ys = ys		<i>sum</i> [] = 0
(x : xs) + ys = x : (<i>xs</i> ++ <i>ys</i>)	sum(x:xs) = x + sum xs
elem :: Eq $a \Rightarrow a \rightarrow [a]$	a] $ ightarrow$ Bool	product :: Num $a \Rightarrow [a] \rightarrow a$
x 'elem' [] = False	9	<i>product</i> [] = 1
x 'elem' (y : ys)		product $(x : xs) = x * product xs$
$= x \equiv y \parallel x$ 'elem' y	'S	

(All these functions are in the standard prelude.)

SE3E03 2006 2 245

SE3E03, 2006 2.252

SE3E03 2006 2 253

385

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via **structural induction**:

$\begin{array}{ll} \text{length} & :: [a] \rightarrow \text{Int} \\ \text{length} = \text{foldr} (\text{const} (1+)) 0 \end{array}$	$concat :: [[a]] \rightarrow [a]$ concat = foldr (+) []	f
$(++) :: [a] \rightarrow [a] \rightarrow [a]$ xs + ys = foldr (:) ys xs	$sum :: Num a \Rightarrow [a] \rightarrow a$ sum = foldr (+) 0	f =
elem :: Eq $a \Rightarrow a \rightarrow [a] \rightarrow Bool$ elem x = foldr (λ y r \rightarrow x = y r) False	product :: Num $a \Rightarrow [a] \rightarrow a$ product = foldr (*) 1	=

(All these functions are in the standard prelude.)

foldr1	::	(a	->	а	->	a)	->	[a]	->	а
foldr1 (\otimes)	[x]	=	x							
foldr1 (\otimes)	(x:xs)	=	x	\otimes	(fo	oldı	r1	(⊗)	xs)

 $\begin{array}{l} \text{foldr1} (\otimes) [x_1, x_2, x_3, x_4, x_5] \\ = x_1 \otimes (\text{foldr1} (\otimes) [x_2, x_3, x_4, x_5]) \\ = x_1 \otimes (x_2 \otimes (\text{foldr1} (\otimes) [x_3, x_4, x_5])) \\ = x_1 \otimes (x_2 \otimes (x_3 \otimes (\text{foldr1} (\otimes) [x_4, x_5]))) \\ = x_1 \otimes (x_2 \otimes (x_3 \otimes (x_4 \otimes (\text{foldr1} (\otimes) [x_5])))) \\ = x_1 \otimes (x_2 \otimes (x_3 \otimes (x_4 \otimes x_5))) \\ \end{array}$

List Folding
ural induction over lists!
:: (a -> b -> b) -> b -> [a] -> b
= z = f x (foldr f z xs)
:: (a -> a -> a) -> [a] -> a = x = f x (foldr1 f xs)
:: (a -> b -> a) -> a -> [b] -> a = z = foldl f (f z x) xs
:: (a -> a -> a) -> [a] -> a = foldl f x xs
)

394

Lambda-Abstraction

Named functions:	Anonymous functions:
add1 $x = x + 1$	(+ 1)
recip $x = 1 / x$	(1/)
square $x = x * x$	$\lambda \ x \to x \ * \ x$
	\ x -> x * x

In " $\lambda x \rightarrow body$ ", the variable x is **bound.**

Typing rule:

If, assuming x :: a, we can get body :: b, then $(\lambda x \rightarrow body) :: a \rightarrow b$

Evaluation rule: β-reduction uses substitution:

 $(\lambda x \rightarrow body) arg \rightarrow body[x \mapsto arg]$

SE3E03, 2006 2.268

Enumeration Type Definitions

data Bool = False | True deriving (Eq, Ord, Read, Show) data Ordering = LT | EQ | GT deriving (Eq, Ord, Read, Show)

data Suit = Diamonds | Hearts | Spades | Clubs **deriving** (Eq, Ord) Pattern matching:

not False = True not True = False

 $\label{eq:lexicalCombineOrdering :: Ordering \to Ordering \to Ordering \\ lexicalCombineOrdering LT _ = LT \\ lexicalCombineOrdering EQ x = x \\ lexicalCombineOrdering GT _ = GT \\ \end{tabular}$

Simple data Type Definitions

data Point = Pt Int Int deriving (Eq) -- screen coordinates

This defines at the same time a **data constructor**:

 $Pt :: Int \rightarrow Int \rightarrow Point$

Pattern matching:

SE3E03, 2006 2.272

412

addPt (Pt x1 y1) (Pt x2 y2) = Pt (x1 + x2) (y1 + y2)

SE3E03, 2006 2.275

417

Multi-Constructor data Type Definitions

data Transport = Feet | Bike | Train Int -- price in cent This defines at the same time data constructors: Feet :: Transport Bike :: Transport Train :: Int \rightarrow Transport Pattern matching: cost Feet = 0 cost Bike = 0 cost (Train Int) = Int

429

464

Simple Polymorphic data Type Definitions

data Token = Number Integer	The prelude type constructors Maybe, Either, Complex are defined as follows:
Sep Char Ident String deriving (Show)	data Maybe a = Nothing Just a deriving (Eq, Ord, Read, Show)
Constructors:	data Either a b = Left a Right b deriving (Eq, Ord, Read, Show)
Number :: Integer \rightarrow Token Sep :: Char \rightarrow Token	data Complex $r = r :+ r$ deriving (Eq, Read, Show)
Ident :: String \rightarrow Token	This defines at the same time data constructors :
Pattern Matching:	Nothing :: Maybe a
showToken(Number n)= "Number " ++ show n showToken(Sep c)= "Sep " ++ show c	Just :: $a \rightarrow Maybe a$
show Token (Ident s) = "Ident " + show s	Left :: $a \rightarrow Either a b$
(Defining this as "show :: Token \rightarrow String" is the effect of "deriving (Show)".)	Right :: $b \rightarrow$ Either a b

 $(:+):: r \rightarrow r \rightarrow Complex r$

SE3E03, 2006 2.300

Lexical Analysis — Haskell Example

Token Type

module SimpleLexer where import Char

data Token = Number Integer
 | Sep Char
 | Ident String deriving (Show)
simpleLexer :: String → [Token]
simpleLexer (c:cs)
isDigit c = lexNumber [c] cs
isAlpha c = lexIdent [c] cs
isSpace c = simpleLexer cs
isSpace c = simpleLexer cs
otherwise = error ("simpleLexer: illegal character:" ++ take 20 (c:cs))
simpleLexer [] = []

 $isSep \ c = c \ elem' \ (){};,+-*/"$

SE3E03, 2006 2.315

449

Abstract Syntax Example — Haskell

 $Expr \rightarrow Ident \mid Number \mid Expr Op Expr$

data Op = MkOp String deriving Show data Expr = Var String Num Integer Bin Expr Op Expr deriving Show	$\begin{bmatrix} & & & & & & & & & & & \\ & & & & & & & $
expr1 = Bin (Bin (Var "a") (MkOp "+") (Var "b")) (MkOp "*") (Var "c")	plus x y = Bin x (MkOp "+") y mult x y = Bin x (MkOp "*") y expr2 = (Var "a" 'plus' Var "b") 'mult' Var "c"

473

474

Some Prelude Functions — Text Processing

```
:: String -> [String]
lines
lines ""
           = []
           = let (1,s') = break (' n'==) s
lines s
             in l : case s' of []
                                  -> []
                               (_:s") -> lines s"
words
          :: String -> [String]
words s
          = case dropWhile isSpace s of
                  "" -> []
                 s' -> w : words s"
                        where (w,s") = break isSpace s'
unlines :: [String] -> String
unlines = foldr (\ l r -> l ++ '\n' : r) []
unwords :: [String] -> String
unwords []
                =
                   .....
unwords [w]
                = w
unwords (w:ws) = w ++ ' ' : unwords ws
```

data Op = MkOp String
deriving Show

showOp :: $Op \rightarrow String$ showOp (MkOp s) = s

data Expr

Var StringNum IntegerBin Expr Op Expr

```
showExpr :: Expr \rightarrow String
showExpr (Var v) = v
showExpr (Num n) = show n
showExpr (Bin e1 op e2) =
'(' : showExpr e1 + showOp op + showExpr e2 ++ ")"
```

SE3E03, 2006 2.324

Exercise: Text Processing

Showing Expr

• lines :: String \rightarrow [String]

lines breaks a string up into a list of strings at newline characters. The resulting strings do not contain newlines.

• words :: String \rightarrow [String]

words breaks a string up into a list of words, which were delimited by white space.

• unlines :: [String] \rightarrow String

unlines is an inverse operation to *lines*. It joins lines, after appending a terminating newline to each.

• unwords :: [String] \rightarrow String

unwords is an inverse operation to *words*. It joins words with separating spaces.