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Exercise: Positional List Splitting

• take : : Int → [ a ] → [ a ]

take, applied to ak : : Int and a listxs, returns the longest prefix ofxs of
elements that has no more thank elements.

• drop : : Int → [ a ] → [ a ]

drop k xs returns the suffix remaining aftertake k xs.

Laws:

• take k xs ++ drop k xs = xs

• length ( take k xs ) ≤ k

Note: splitAt k xs = ( take k xs , drop k xs )
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Guarded Definitions

sign x | x > 0 = 1
| x == 0 = 0
| x < 0 = -1

choose : : Ord a ⇒ ( a ,b ) → ( a ,b ) → b
choose ( x ,v ) ( y ,w )

| x > y = v
| x < y = w
| otherwise = error "I cannot decide!"

If no guard succeeds, the next pattern is tried:
take 0 _ = [ ]
take k _ | k < 0 = error "take: negative argument"
take k [ ] = [ ]
take k ( x : xs ) = x : take ( k − 1) xs

take 2 [ 5 , 6 , 7 ] = take 2 (5 : 6 : 7 : [ ] )
= 5 : take (2 − 1) (6 : 7 : [ ] )
= 5 : take 1 (6 : 7 : [ ] )
= 5 : 6 : take (1 − 1) (7 : [ ] )
= 5 : 6 : take 0 (7 : [ ] )
= 5 : 6 : [ ] = [ 5 , 6 ]
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where Clauses

If an auxiliary definition is used only locally, it should be inside alocal definition,
e.g.:

commaWords : : [ String ] → String

commaWords [ ] = [ ]
commaWords ( x : xs ) = x ++ commaWordsAux xs

where
commaWordsAux [ ] = [ ]
commaWordsAux xs = ", " : commaWords xs

where clauses are visibleonly within their enclosing clause, here “commaWords
( x : xs ) = …”

where clauses are visible within all guards:

f x y | y > z = …

| y == z = …

| y < z = …

where z = x * x
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let Expressions

Local definitions can also be part of expressions:

f k n = let m = k ‘mod‘ n
in if m == 0

then n
else f n m

h x y = let x2 = x * x
y2 = y * y

in sqrt (x2 + y2)

Definitions can usepattern bindings:

g k n = let (d,m) = divMod k n
in if d == 0

then [m]
else g d n ++ [m]

Guards,let andwhere bindings, andcase cases all arelayout sensitive!
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let or where ?

• let bindings in expression

is anexpression

• fname patterns guardedRHSs where bindings

is a clause that is part of adefinition

• (where clauses can also modifycase cases)

Frequently, the choice betweenlet andwhere is a matter ofstyle:

• where clauses result in a top-down presentation

• let expressions lend themselves also to bottom-up presentations
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case Expressions

sign x = case compare x 0 of
GT -> 1
EQ -> 0
LT -> -1

The prelude datatypeOrdering has three elements and is used mostly as result type
of the prelude functioncompare:

data Ordering = LT | EQ | GT

compare : : Ord a ⇒ a → a → Ordering

Another example:

choose ( x ,v ) ( y ,w ) = case compare x y of
GT → v
LT → w
EQ → error "I cannot decide!"
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if … then … else … and case Expressions

The typeBool can be considered as a two-element enumeration type:

data Bool = False | True

Conditional expressions are “syntactic sugar” forcase expressions overBool:

if condition

then expr1

else expr2

≡
case condition of
True → expr1

False → expr2

Two ways of defining functions:

Pattern Matching

not True = False
not False = True

case

not b = case b of
True → False
False → True
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case Expressions are “Anonymous” Pattern Matching

commaWords : : [ String ] → String
commaWords [ ] = [ ]
commaWords ( x : xs ) = x ++ case xs of

[ ] → [ ]
_ → ", " : commaWords xs

Every use of acase expression can be transformed into the use of an auxiliary
function defined by pattern matching:

commaWords : : [ String ] → String
commaWords [ ] = [ ]
commaWords ( x : xs ) = x ++ commaWordsAux xs

commaWordsAux [ ] = [ ]
commaWordsAux xs = ", " : commaWords xs
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Some Prelude Functions — Elementary List Access

head :: [a] -> a
head (x:_) = x

last :: [a] -> a
last [x] = x
last (_:xs) = last xs

tail :: [a] -> [a]
tail (_:xs) = xs

init :: [a] -> [a]
init [x] = []
init (x:xs) = x : init xs

null :: [a] -> Bool
null [] = True
null (_:_) = False
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Some Prelude Functions — List Indexing

length :: [a] -> Int
length = foldl’ (\n _ -> n + 1) 0

(!!) :: [b] -> Int -> b
(x:_) !! 0 = x
(_:xs) !! n | n>0 = xs !! (n-1)
(_:_) !! _ = error "PreludeList.!!: negative index"
[] !! _ = error "PreludeList.!!: index too large"
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Some Prelude Functions — Positional List Splitting

take :: Int -> [a] -> [a]
take 0 _ = []
take _ [] = []
take n (x:xs) | n>0 = x : take (n-1) xs
take _ _ = error "take: negative argument"

drop :: Int -> [a] -> [a]
drop 0 xs = xs
drop _ [] = []
drop n (_:xs) | n>0 = drop (n-1) xs
drop _ _ = error "drop: negative argument"

splitAt :: Int -> [a] -> ([a], [a])
splitAt 0 xs = ([],xs)
splitAt _ [] = ([],[])
splitAt n (x:xs) | n>0 = (x:xs’,xs”)

where (xs’,xs”) = splitAt (n-1) xs
splitAt _ _ = error "splitAt: negative argument"
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Some Prelude Functions — Concatenation, Iteration

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

concat :: [[a]] -> [a]
concat = foldr (++) []

iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)

repeat :: a -> [a]
repeat x = xs where xs = x:xs
{ − repeat x = x : repeat x −} − − for understanding

replicate :: Int -> a -> [a]
replicate n x = take n (repeat x)

cycle :: [a] -> [a]
cycle xs = xs’ where xs’ = xs ++ xs’
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Separation of Concerns: Generation and Consumption

replicate 3 ’!’

= take 3 (repeat ’!’) − − replicate

= take 3 (’!’ : repeat ’!’) − − repeat

= ’!’ : take (3 - 1) (repeat ’!’) − − take (iii)
= ’!’ : take 2 (repeat ’!’) − − subtraction
= ’!’ : take 2 (’!’ : repeat ’!’) − − repeat

= ’!’ : ’!’ : take (2 - 1) (repeat ’!’) − − take (iii)
= ’!’ : ’!’ : take 1 (repeat ’!’) − − subtraction
= ’!’ : ’!’ : take 1 (’!’ : repeat ’!’) − − repeat

= ’!’ : ’!’ : ’!’ : take (1 - 1) (repeat ’!’) − − take (iii)
= ’!’ : ’!’ : ’!’ : take 0 (repeat ’!’) − − subtraction
= ’!’ : ’!’ : ’!’ : [] − − take (i)
= "!!!"
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Exercise: Splitting with Predicates

• takeWhile : : ( a → Bool ) → [ a ] → [ a ]

takeWhile, applied to a predicatep and a listxs, returns the longest prefix
(possibly empty) ofxs of elements that satisfyp.

• dropWhile : : ( a → Bool ) → [ a ] → [ a ]

dropWhile p xs returns the suffix remaining aftertakeWhile p xs.

Laws:

• takeWhile p xs ++ dropWhile p xs = xs

• all p ( takeWhile p xs ) = True

• null ( dropWhile p xs ) || p ( head ( dropWhile p xs ) )

— if p is total (onxs).

Note: span p xs = ( takeWhile p xs , dropWhile p xs )
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Exercise: zipWith

• zip : : [ a ] → [ b ] → [ ( a , b ) ]

zip takes two lists and returns a list of corresponding pairs. If one input list is
short, excess elements of the longer list are discarded.

• zipWith : : ( a → b → c ) → [ a ] → [ b ] → [ c ]

zipWith generaliseszip by zipping with the function given as the first argument,
instead of a tupling function. For example,zipWith ( + ) is applied to two lists
to produce the list of corresponding sums.

• diagonal : : [ [ a ] ] → [ a ]

interprets its argument as a matrix, which may be assumed to be square, and
returns the main diagonal of that matrix, e.g.:

diagonal [ [ 1,2 ,3 ] , [ 4 ,5 ,6 ] , [ 7 ,8 ,9 ] ] = [ 1,5 ,9 ]
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Some Prelude Functions — List Splitting with Predicates

takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs)

| p x = x : takeWhile p xs
| otherwise = []

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)

| p x = dropWhile p xs’
| otherwise = xs

span, break :: (a -> Bool) -> [a] -> ([a],[a])
span p [] = ([],[])
span p xs@(x:xs’)

| p x = let (ys,zs) = span p xs’ in (x:ys,zs)
| otherwise = ([],xs)

break p = span (not . p)
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as-Patterns

dropWhile        :: (a -> Bool) -> [a] -> [a]
dropWhile p []    = []
dropWhile p xs@(x:xs’)
      | p x       = dropWhile p xs’
      | otherwise = xs

Consider matching of the third clause againstdropWhile ( < 5) [ 1,2 ,3 ] :

• p = ( < 5)

• xs = [1,2 ,3 ]

• x = 1

• xs’ = [2 ,3 ]

• p x = ( < 5) 1 = 1 < 5 = True

Therefore:dropWhile ( < 5) [ 1,2 ,3 ] = dropWhile ( < 5) [ 2 ,3 ]
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as-Patterns — 2

dropWhile        :: (a -> Bool) -> [a] -> [a]
dropWhile p []    = []
dropWhile p xs@(x:xs’)
      | p x       = dropWhile p xs’
      | otherwise = xs

Consider matching of the third clause againstdropWhile ( < 5) [ 5 ,4 ,3 ] :

• p = ( < 5)

• xs = [5 ,4 ,3 ]

• x = 5

• xs’ = [4 ,3 ]

• p x = ( < 5) 5 = 5 < 5 = False

Therefore:dropWhile ( < 5) [ 5 ,4 ,3 ] = [ 5 ,4 ,3 ]
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What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

• Type systems: type constantsand type constructors,parametricpolymorphism
(type variables), type inference

• Operator precedence rules: juxtaposition as operator, “associate to the
left/right”

• Argument passing: not by value or reference, but by name

• Powerful datatypeswith simple interface: Integer , lists, lists of lists of …

• Non-local control (evaluation on demand): modularity (e.g., generate
/ prune)
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Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined viastructural
induction:

length : : [ a ] → Int

length [ ] = 0

length ( x : xs ) = 1 + length xs

( ++ ) : : [ a ] → [ a ] → [ a ]
[ ] ++ ys = ys
( x : xs ) ++ ys = x : ( xs ++ ys )

elem : : Eq a ⇒ a → [ a ] → Bool

x ‘elem‘ [ ] = False
x ‘elem‘ ( y : ys )

= x ≡ y || x ‘elem‘ ys

concat : : [ [ a ] ] → [ a ]
concat [ ] = [ ]
concat ( xs : xss ) = xs ++ concat xss

sum : : Num a ⇒ [ a ] → a

sum [ ] = 0

sum ( x : xs ) = x + sum xs

product : : Num a ⇒ [ a ] → a

product [ ] = 1

product ( x : xs ) = x ∗ product xs

(All these functions are in the standard prelude.)
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Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined viastructural
induction:

length : : [ a ] → Int

length = foldr ( const (1 + ) ) 0

( ++ ) : : [ a ] → [ a ] → [ a ]
xs ++ ys = foldr ( : ) ys xs

elem : : Eq a ⇒ a → [ a ] → Bool

elem x = foldr (λ y r → x ≡ y || r ) False

concat : : [ [ a ] ] → [ a ]
concat = foldr ( ++ ) [ ]

sum : : Num a ⇒ [ a ] → a

sum = foldr ( + ) 0

product : : Num a ⇒ [ a ] → a

product = foldr ( ∗ ) 1

(All these functions are in the standard prelude.)
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foldr

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr ( ⊗ ) z [] = z

foldr ( ⊗ ) z (x:xs) = x ⊗ (foldr ( ⊗ ) z xs)

foldr ( ⊗ ) z [ x1, x2, x3, x4, x5 ]

= x1 ⊗ (foldr ( ⊗ ) z [ x2, x3, x4, x5 ])

= x1 ⊗ ( x2 ⊗ (foldr ( ⊗ ) z [ x3, x4, x5 ]))

= x1 ⊗ ( x2 ⊗ ( x3 ⊗ (foldr ( ⊗ ) z [ x4, x5 ])))

= x1 ⊗ ( x2 ⊗ ( x3 ⊗ ( x4 ⊗ (foldr ( ⊗ ) z [ x5 ]))))

= x1 ⊗ ( x2 ⊗ ( x3 ⊗ ( x4 ⊗ ( x5 ⊗ (foldr ( ⊗ ) z [])))))

= x1 ⊗ ( x2 ⊗ ( x3 ⊗ ( x4 ⊗ ( x5 ⊗ z))))
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foldr1

foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 ( ⊗ ) [x] = x

foldr1 ( ⊗ ) (x:xs) = x ⊗ (foldr1 ( ⊗ ) xs)

foldr1 ( ⊗ ) [ x1, x2, x3, x4, x5 ]

= x1 ⊗ (foldr1 ( ⊗ ) [ x2, x3, x4, x5 ])

= x1 ⊗ ( x2 ⊗ (foldr1 ( ⊗ ) [ x3, x4, x5 ]))

= x1 ⊗ ( x2 ⊗ ( x3 ⊗ (foldr1 ( ⊗ ) [ x4, x5 ])))

= x1 ⊗ ( x2 ⊗ ( x3 ⊗ ( x4 ⊗ (foldr1 ( ⊗ ) [ x5 ]))))

= x1 ⊗ ( x2 ⊗ ( x3 ⊗ ( x4 ⊗ x5 )))
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List Folding

foldr abstracts structural induction over lists!

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 f [x] = x
foldr1 f (x:xs) = f x (foldr1 f xs)

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

foldl1 :: (a -> a -> a) -> [a] -> a
foldl1 f (x:xs) = foldl f x xs
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Lambda-Abstraction

Named functions:

add1 x = x + 1

recip x = 1 / x

square x = x ∗ x

Anonymous functions:

( + 1)

(1 / )

λ x → x ∗ x

\ x -> x * x

In “λ x → body”, the variablex is bound.

Typing rule:

If, assumingx : : a, we can getbody : : b, then (λ x → body ) : : a → b

Evaluation rule: β-reduction uses substitution:

(λ x → body ) arg → body[x 7→ arg]
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Enumeration Type Definitions

data Bool = False | True deriving ( Eq , Ord , Read , Show )
data Ordering = LT | EQ | GT deriving ( Eq , Ord , Read , Show )

data Suit = Diamonds | Hearts | Spades | Clubs deriving ( Eq , Ord )

Pattern matching:

not False = True
not True = False

lexicalCombineOrdering : : Ordering → Ordering → Ordering

lexicalCombineOrdering LT _ = LT

lexicalCombineOrdering EQ x = x

lexicalCombineOrdering GT _ = GT
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Simpledata Type Definitions

data Point = Pt Int Int deriving ( Eq ) −− screen coordinates

This defines at the same time adata constructor:

Pt : : Int → Int → Point

Pattern matching:

addPt ( Pt x1 y1) ( Pt x2 y2 ) = Pt ( x1 + x2 ) ( y1 + y2 )
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Multi-Constructor data Type Definitions

data Transport = Feet
| Bike
| Train Int −− price in cent

This defines at the same timedata constructors:

Feet : : Transport

Bike : : Transport

Train : : Int → Transport

Pattern matching:

cost Feet = 0

cost Bike = 0

cost ( Train Int ) = Int
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Token Type

data Token = Number Integer
| Sep Char
| Ident String deriving ( Show )

Constructors:

Number : : Integer → Token

Sep : : Char → Token

Ident : : String → Token

Pattern Matching:

showToken ( Number n ) = "Number " ++ show n

showToken ( Sep c ) = "Sep " ++ show c

showToken ( Ident s ) = "Ident " ++ show s

(Defining this as “show : : Token → String” is the effect of “deriving ( Show )”.)
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Lexical Analysis — Haskell Example

module SimpleLexer where
import Char

data Token = Number Integer
| Sep Char
| Ident String deriving ( Show )

simpleLexer : : String → [ Token ]
simpleLexer ( c :cs )

| isDigit c = lexNumber [ c ] cs
| isAlpha c = lexIdent [ c ] cs
| isSep c = Sep c : simpleLexer cs
| isSpace c = simpleLexer cs
| otherwise = error ("simpleLexer: illegal character: " ++ take 20 ( c :cs ) )

simpleLexer [ ] = [ ]

lexNumber , lexIdent : : String → String → [ Token ]
lexNumber prefix ( c :cs ) | isDigit c = lexNumber ( prefix ++ [ c ] ) cs
lexNumber prefix s = Number ( read prefix ) : simpleLexer s
lexIdent prefix ( c :cs ) | isAlphaNum c = lexIdent ( prefix ++ [ c ] ) cs
lexIdent prefix s = Ident prefix : simpleLexer s

isSep c = c ‘elem‘ "(){};,+-*/"
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Simple Polymorphicdata Type Definitions

The preludetype constructorsMaybe, Either , Complex are defined as follows:

data Maybe a = Nothing | Just a deriving ( Eq , Ord , Read , Show )

data Either a b = Left a | Right b deriving ( Eq , Ord , Read , Show )

data Complex r = r :+ r deriving ( Eq , Read , Show )

This defines at the same timedata constructors:

Nothing : : Maybe a

Just : : a → Maybe a

Left : : a → Either a b

Right : : b → Either a b

( :+ ) : : r → r → Complex r
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Abstract Syntax Example — Haskell

Expr → Ident | Number | Expr Op Expr

data Op = MkOp String

deriving Show

data Expr
= Var String
| Num Integer
| Bin Expr Op Expr

deriving Show

expr1 = Bin
( Bin ( Var "a")

( MkOp "+")
( Var "b") )

( MkOp "*")
( Var "c")

Expr

Expr

Expr

Ident

a

Op

+

Expr

Ident

b

Op

*

Expr

Ident

c

*

+

a b

c

plus x y = Bin x ( MkOp "+") y

mult x y = Bin x ( MkOp "*") y

expr2 = ( Var "a" ‘plus‘ Var "b") ‘mult‘ Var "c"
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Showing Expr

data Op = MkOp String

deriving Show

showOp : : Op → String

showOp ( MkOp s ) = s

data Expr
= Var String
| Num Integer
| Bin Expr Op Expr

showExpr : : Expr → String

showExpr ( Var v ) = v

showExpr ( Num n ) = show n

showExpr ( Bin e1 op e2 ) =
’(’ : showExpr e1 ++ showOp op ++ showExpr e2 ++ ")"
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Exercise: Text Processing

• lines : : String → [ String ]

lines breaks a string up into a list of strings at newline characters. The resulting
strings do not contain newlines.

• words : : String → [ String ]

words breaks a string up into a list of words, which were delimited by white
space.

• unlines : : [ String ] → String

unlines is an inverse operation tolines. It joins lines, after appending a
terminating newline to each.

• unwords : : [ String ] → String

unwords is an inverse operation towords. It joins words with separating
spaces.
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Some Prelude Functions — Text Processing

lines :: String -> [String]
lines "" = []
lines s = let (l,s’) = break (’\n’==) s

in l : case s’ of [] -> []
(_:s”) -> lines s”

words :: String -> [String]
words s = case dropWhile isSpace s of

"" -> []
s’ -> w : words s”

where (w,s”) = break isSpace s’

unlines :: [String] -> String
unlines = foldr (\ l r -> l ++ ’\n’ : r) []

unwords :: [String] -> String
unwords [] = ""
unwords [w] = w
unwords (w:ws) = w ++ ’ ’ : unwords ws


