Haskell

- functional - programs are function definitions; functions are "first-class citizens"
- pure (referentially transparent) — "no side-effects"
- non-strict (lazy) — arguments are evaluated only when needed
- statically strongly typed - all type errors caught at compile-time
- type classes - safe overloading
- Standardised language version: Haskell 98
- Several compilers and interpreters available
- Comprehensive web site: http://haskell.org/

Simple Expression Evaluation

The Haskell interpreters hugs, ghci, and hi accept any expression at their prompt and print (after the first ENTER) the value resulting from evaluation of that expression.

```
Prelude> 4* (5+6)-2
```

42
Expression evaluation proceeds by applying rules to subexpressions:

$=4 *(5+6)-2$		[subtraction \& mult. impossible]
$=4 * 11-2$	(addition)	[subtraction impossible]
$=44-2$	(multiplication)	
42	(subtraction)	

Unfolding Definitions

Assume the following definitions to be in scope:

```
answer = 42
magic = 7
```

Expression evaluation will unfold (or expand) definitions:

```
Prelude> (answer - 1) * (magic * answer - 23)
1 1 1 1 1
    (answer - 1) * (magic * answer - 23)
= (42 - 1) * (magic * 42 - 23) (answer)
=41 * (magic * 42 - 23) (subtraction)
=41* (7*42-23) (magic)
= 41* (294-23) (multiplication)
=41*271 (subtraction)
= 11111
```

(answer) (subtraction) (magic) (multiplication) (subtraction) (multiplication)

How did I find those numbers?

Easy!
Prelude> $[n \mid n<-[1 . .400], 11111$ 'mod' $n==0]$
[1,41,271]
This is a list comprehension:

- return all n
- where n is taken from then list [1 .. 400]
- and a result is returned only if n divides 11111 .

Expanding Function Definitions

```
perimeter :: Double -> Double
perimeter r = 2 * r * pi
square :: Integer -> Integer
square x = x * x
```

```
    perimeter (1 + 2)
```

 perimeter (1 + 2)
 = 2 * (1 + 2) * pi
= 2 * (1 + 2) * pi
= 2 * 3 * pi
= 2 * 3 * pi
= 6 * pi
= 6 * pi
= 18.84955592153876
= 18.84955592153876
square (1 + 2)
square (1 + 2)
=(1+2)* (1 + 2)
=(1+2)* (1 + 2)
= 3*3
= 3*3
= 9

```
= 9
```


Matching Function Definitions

```
fact :: Integer -> Integer
fact 0 = 1
fact n = n * fact (n-1)
    fact 3
\begin{tabular}{|c|c|}
\hline \(=3\) * fact (3-1) & (fact n ) \\
\hline 3 * fact 2 & (determining which fact rule matches) \\
\hline \(=3\) * (2 * fact (2-1)) & (fact n ) \\
\hline \(=3\) * (2 * fact 1\()\) & (determining which fact rule matches) \\
\hline \(=3\) * (2 * (1 * fact (1-1))) & (fact n ) \\
\hline \(=3\) * (2 * (1 * fact 0) ) & (determining which fact rule matches) \\
\hline \(=3\) * (2 * (1 * 1 ) ) & (fact 0) \\
\hline \(=3\) * (2*1) & (multiplication) \\
\hline \(=3 * 2\) & (multiplication) \\
\hline 6 & (multiplication) \\
\hline
\end{tabular}
```


Simple Expression Evaluation - Explanation

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function f to a number of arguments, the value of the argument at position i is always needed. then f is called strict in its i-th argument
- Therefore: If f is strict in its i-th argument, then the i-th argument has to be evaluated whenever a result is needed from f.
- Simpler: A one-argument function f is strict iff f undefined $=$ undefined.
- Constant functions are non-strict:
(const 5) undefined $=5$
- Checking a list for emptyness is strict: null undefined = undefined
- List construction is non-strict: null (undefined: undefined) = False
- Standard arithmetic operators are strict in both arguments:

0 * undefined = undefined

Conditional Expressions

Prelude> if 11111 'mod' $41==0$ then 11111 'div' 41 else 5

 271The pattern is:

if condition then expression 1 else expression 2

- If the condition evaluates to True, the conditional expression evaluates to the value of expression1.
- If the condition evaluates to False, the conditional expression evaluates to the value of expression 2 .
- If the condition does not evaluate to anything, the conditional expression also does not evaluate to anything.

Therefore: "if _ then _ else _" is strict in the condition.
In C: (condition ? expression 1 : expression 2)

Expanding Function Definitions

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

```
fact 3
```

fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3*2 * fact (2-1)
= 3*2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
=3 * 2 * 1 * fact (1-1
=3 * 2 * 1 * fact (1-1
=3*2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
=3*2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
= 3 * 2 * 1 * if 0 == 0 then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * if 0 == 0 then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * if True then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * if True then 1 else 0 * fact (0-1)
=3*2 * 1 * 1
=3*2 * 1 * 1
=3*2*1
=3*2*1
= 3*2
= 3*2
=6

```
=6
```


Lists

- List display: between square brackets explicitly listing all elements, separated by commas:

$$
[1,4,9,16,25]
$$

- Enumeration lists: denoted by ellipsis ". ." inside square brackets; defined by beginning (and end, if applicable):

$[1 \ldots 10]$	$=[1,2,3,4,5,6,7,8,9,10]$
$[1,3 \ldots 10]$	$=[1,3,5,7,9]$
$[1,3 \ldots 11]$	$=[1,3,5,7,9,11]$
$[11,9 \ldots 1]$	$=[11,9,7,5,3,1]$
$[11 \ldots 1]$	$=[]$
$[1 \ldots]$	$=[1,2,3,4,5,6,7,8,9,10, \ldots]$
$[1,3 \ldots]$	$=[1,3,5,7,9,11, \ldots]$

List Construction

Display and enumeration lists are syntactic sugar: A list is

- either the empty list: [],
- or non-empty, and constructed from a head x and a tail $x s$ (read: "xes")
x : xs - read: " x cons xes".
" $:$ " is used as infix list constructor:

| $3:[]$ | $=$ | $[3]$ |
| ---: | :--- | :--- | ---: |
| $2:[3]$ | $=$ | $[2,3]$ |
| $1:[2,3]$ | $=$ | $[1,2,3]$ |

As an infix operator, ":" associates to the right:

$$
x: y: y s=x:(y: y s)
$$

Example:
$1: 2:[3,4]=1:(2:[3,4])=1:[2,3,4]=[1,2,3,4]$

SE3E03, 20061.136

Cons is Not Associative

The convention that " $:$ " associates to the right allows to save parentheses in certain cirtcumstances.

However, ":" is not associative:

- A list of integers:

```
1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]
```

- (1 : 2) : [3, 4] is nonsense, since 2 is not a list!
- A list of lists of integers:
$[2]:[[3,4,5],[6,7]]=[[2],[3,4,5],[6,7]]$
- Another list of lists of integers:
(1 : [2]) : [[3, 4, 5], [6,7]] = [[1, 2], [3,4,5], [6, 7]]
- 1 : ([2] : [[3, 4,5], [6,7]]) is nonsense again!

Reason: 1 and [2] cannot be members of the same list (type error).

List Comprehensions

General shape:

$$
\left[\text { term } \mid \text { generator }\{, \text { generator_or_constraint }\}^{*}\right]
$$

Examples:
$[n * n \mid n \leftarrow[1 . .5]]=[1,4,9,16,25]$
[$n * n \mid n \leftarrow[1 . .10]$, even $n]=[4,16,36,64,100]$
$[m * n \mid m \leftarrow[1,3,5], n \leftarrow[2,4,6]]=[2,4,6,6,12,18,10,20,30]$

Note:

- The left generator "generates slower".
- Haskell code fragments will frequently be presented like above in a form that is more readable than plain typewriter text - in that case, the "comes from" arrow "<-" in generators turns into " $\leftarrow "$

Important Points

- Execution of Haskell programs is expression evaluation
- Defining functions in Haskell is more like defining functions in mathematics than like defining procedures in C or classes and methods in Java
- One Haskell function may be defined by several "equations" - the first that matches is used.
- Lists are an easy-to-use datastructure with lots of language and library support.
For this reason, lists are heavily used especially in beginners' material.
In many cases, advanced Haskell programmers will use other datastructures, for example FiniteMaps instead of association lists.

The Type Language

Haskell has a full-fledged type language, with

- Simple predefined datatypes: Bool, Char, Integer, ...
- Predefined type constructors: lists, tuples, functions, ...
- Type synonyms
- User-defined datatypes and type constructors
- Type variables - to express parametric polymorphism
- ...

Simple Predefined Datatypes

Bool	truth values	False, True
Char	"Unicode" characters	(in GHC: ISO-10646)
Integer	integers	arbitrary precision
Int	"machine integers"	≥ 32 bits
Float	real floating point	single precision
Double	real floating point	double precision
Complex Float	complex floating point	single precision
Complex Double	complex floating point	double precision

List Types

If t is a type, then the list type [$t]$ is the type of lists with elements of type t.
answer :: Integer
answer = 42
limit : : Int
limit $=100$
Then:

- [1, 2, 3, answer] :: [Integer]
- [1 .. limit] : : [Int]
- [[1 .. limit] , [2 .. limit]] :: [[Int]]
- ['h', 'e', 'l', 'l', 'o'] :: [Char]
- "hello" :: [Char]
- ["hello", "world"] :: [[Char]]
- [["first", "line"], ["second", "line"]] :: [[[Char]]]

Product Types (Pairs)

If t and u are types, then the product type (t, u) is the type of pairs with first component of type t and second component of type u (mathematically: $t \times u$).

Examples:

- (answer, limit) : : (Integer, Int)
- (limit, answer) : : (Int, Integer)
- ("???", answer) : : ([Char], Integer)
- ("???", (limit, answer)) :: ([Char], (Int, Integer))
- ("???", 'X') : : ([Char], Char)
- (limit, ("???", 'X')) :: (Int, ([Char], Char))
- (True, [("X",limit),("Y",5)]) :: (Bool, [([Char], Int)])

Tuple Types

If $n \neq 1$ is a natural number and t_{1}, \ldots, t_{n} are types, then the tuple type $\left(t_{1}, \ldots, t_{n}\right)$ is the type of n-tuples with the i th component of type t_{i}.

Examples:

- (answer, 'c', limit) :: (Integer, Char, Int)
- (answer, 'c', limit, "all") :: (Integer, Char, Int, [Char])
- () : : ()
- there is exactly one zero-tuple.

The type () of zero-tuples is also called the unit type.

Simple Type Synonyms

If t is a type not containing any type variables, and Name is an identifier with a capital first letter, then

```
type Name = t
```

defines Name as a type synonym for t, i.e., Name can now be used interchangeably with t.

Examples:

```
type String = [Char] -- predefined
type Point = (Double, Double) -- (1.5, 2.7)
type Triangle = (Point, Point, Point)
type CharEntity = (Char, String) -- ('\tilde{A}1/4, "&uuml;")
type Dictionary = [(String,String)] -- [("day","jour")]
```


Type Variables and Polymorphic Types

- Identifiers with lower-case first letter can be used as type variables.
- Type variables can be used like other types in the construction of types, e.g.:

```
[(a,b) ]
(Bool, (a, Int))
[ ( String, [(key, val)] ) ]
```

- A type containing at least one type variable is called polymorphic
- Polymorphic types can be instantiated by instantiating type variables with types, e.g.:

$[(a, b)]$	\Rightarrow	$[($ Char,$b)]$
$[(a, b)]$	\Rightarrow	$[($ Char, Int $)]$
$[(a, b)]$	\Rightarrow	$[(a,[($ String, Int $)])]$
$[(a, b)]$	\Rightarrow	$[(a,[($ String,$c)])]$

Function Types and Function Application

If t and u are types, then function type $t->u$ is the type of all functions accepting arguments of type t and producing results of type u (mathematically: $t \rightarrow u$).

Then:

- If a function $f:: a->b$ and an argument $x:: a$ are given, then we have (f x) : : b.
- If a function $f:$: $a->b$ is given and we know that (f x) : b, then the argument x is used at type a.
- If an argument $x:: a$ is given and we know that ($\mathrm{f} x$) $:=\mathrm{b}$, then the function f is used at type $a \rightarrow b$.

Typing of List Construction

- The empty list can be used at any list type: [] : : [a]
- If an element $x:: a$ and a list $x s:$ [a] are given, then

$$
(x: x s)::[a]
$$

```
Examples:
2
:: Int
[] :: [Int]
[2] = 2 : [] :: [Int]
[[3,4,5], [6,7]] :: [[Int]]
[2] : [[3,4,5], [6,7]] :: [[Int]]
1 : ([2] : [[3,4,5], [6,7]]) -- cannot be typed!
```


Type Inference Examples

```
fst :: (a,b) -> a
fst (x,y) = x
fst ('c', False) :: Char
["hello", fst (x, 17)] }=>\mathrm{ x :: String
f p = limit + fst p }\quad=>\quadp:: (Int,a
    f :: (Int,a) -> Int
g h = fst (h "") : [limit]
    # h :: String -> (Int,a)
```


Let's Play the Evaluation Game Again - 1

```
h1 :: String -> (Int, String)
h1 str = (length str, , , : str)
g h = fst (h "") : [limit]
```


Then:

g h1
= fst (h1 "") : [limit]
= fst (length "", ' , : "") : [limit]
= length "" : [limit]
$=0$: [limit]
$=[0,100]$

Higher-Order Functions

```
g h = fst (h "") : [limit]
```

Functional Programming: Functions are first-class citizens

- Functions can be arguments of other functions: gh2
- Functions can be components of data structures: $(7, h 1)$, $h 1, h 2]$
- Functions can be results of function application: succ . succ

A first-order function accepts only non-functional values as arguments.
A higher-order function expects functions as arguments.
g is a second-order function: it expects first-order functions like h1, h2 as arguments.

Let's Play the Evaluation Game Again - 2

```
h2 :: String -> (Int, Char)
h2 str = (sum (map ord (notOccCaps str)), head str)
notOccCaps :: String -> String
notOccCaps str = filter (`notElem` str) ['A' .. 'Z']
g h = fst (h "") : [limit]
```


Then:

```
g h2
= fst (h2 "") : [limit]
= fst (sum (map ord (notOccCaps "")), head "") : [limit]
\(=\) sum (map ord (notOccCaps "")) : [limit]
= ...
= 2015 : [limit]
\(=[2015,100]\)
```


map and filter

```
map :: (a -> b) -> ([a] -> [b])
map f [] = []
map f (x:xs) = f x : map f xs
filter :: (a -> Bool) -> ([a] -> [a])
filter p [] = []
filter p (x : xs) = if p x then x : rest else rest
    where rest = filter p xs
```

These functions could also be defined via list comprehension:

```
map f xs = [f x | x <- xs ]
filter p xs = [ x | x <- xs, p x ]
```


Examples:

```
map (7 *) [1 .. 6] = [7, 14, 21, 28, 35, 42]
filter even [1 .. 6] = [2, 4, 6]
```


Operator Sections

- Infix operators are turned into functions by surrounding them with parentheses:

$$
\text { (+) } 23=2+3
$$

- This is necessary in type declarations:

- It is also possible to supply only one argument (which has to be an atomic expression):

Type Inference Examples

```
fst :: (a,b) -> a
fst (x,y) = x
fst ('c', False) :: Char
["hello", fst (x, 17)] }\quad=>\quadx :: String
f p = limit + fst p }\quad=>\quadp:: (Int,a
    f :: (Int,a) -> Int
```

g h = fst (h " ") : [limit]
$\Rightarrow \quad h:: \quad$ String -> (Int, a)
$\mathrm{g}:$: (String $->($ Int, a)) $->$ [Int]

Curried Functions

- Function application associates to the left, i.e.,

$$
f x y=(f x) y
$$

- Multi-argument functions in Haskell are typically defined as curried function, i.e., "they accept their arguments one at a time":

```
cylVol r h = (pi :: Double) * r * r * h
```

Since the right-hand side, r, and h obviously all have type Double, we have;

```
(cylVol r) :: Double -> Double
cylVol :: Double -> (Double -> Double)
```

- Function type construction associates to the right, i.e.,

$$
\mathrm{a}->\mathrm{b} \rightarrow \mathrm{c}=\mathrm{a}->(\mathrm{b}->\mathrm{c})
$$

$f:: a \rightarrow b \rightarrow c$
$x:: a$
$y:: b$
The type of f is the function type $a \rightarrow(b \rightarrow c)$, with

- argument type a,
- result type $b \rightarrow c$.

Therefore, we can apply f to x and obtain:
$(f x):: b \rightarrow c$
The application of a "two-argument function" to a single argument is a "one-argument function", which can then be applied to a second argument:

$$
(f x) y:: c=f x y
$$

Partial Application - Example

```
g::(String -> (Int, a)) }->\mathrm{ [ Int]
```

g::(String -> (Int, a)) }->\mathrm{ [Int]
g h = fst (h "") : [limit]
g h = fst (h "") : [limit]
k :: Int }->\mathrm{ String }->\mathrm{ (Int, String)
k :: Int }->\mathrm{ String }->\mathrm{ (Int, String)
knstr = (n* (length str + 1), unwords (replicate n str))
knstr = (n* (length str + 1), unwords (replicate n str))
g(k 3)
g(k 3)
= fst (k 3 "") : [limit]
= fst (k 3 "") : [limit]
= fst (3 * (length "" + 1), unwords (replicate 3 "")) : [limit]
= fst (3 * (length "" + 1), unwords (replicate 3 "")) : [limit]
= (3 * (length "" + 1)) : [limit]
= (3 * (length "" + 1)) : [limit]
=(3* (0 + 1)) : [limit]
=(3* (0 + 1)) : [limit]
=(3*1) : [limit]
=(3*1) : [limit]
= 3 : [limit]
= 3 : [limit]
= [3, 100]

```
= [3, 100]
```


Operations on Functions

```
id :: a -> a - - identity function
id x = x
(.) :: (b -> c) -> (a -> b) -> (a -> c) - - function composition
(f . g) x = f (g x)
flip :: (a -> b -> c) -> (b -> a -> c) -- argument swapping
flip f x y = f y x
curry :: ((a,b) -> c) -> (a -> b -> c) -- currying
curry g x y = g (x,y)
uncurry :: (a -> b -> c) -> ((a,b) -> c)
uncurry f (x,y) = f x y
```

Exercise (necessary!): Copy only the definitions to a sheet of paper, and then infer the types yourself!

Turning Functions into Infix Operators

Surrounding a function name by backquotes turns it into an infix operator.
Frequently used examples (not the "natural" types throughout):

```
div, mod, max, min :: Int -> Int -> Int
elem :: Int -> [Int] -> Bool
12 `div` 7 = 1
12 `mod` 7 = 5
12 'max` 7 = 12
12 `min` 7 = 7
12 `elem` [1 .. 10] = False
```


Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern matching:

```
null \(\quad::[a] \rightarrow\) Bool
null [] = True
null \((x: x s)=\) False
head \(::[a] \rightarrow a\)
head \((x: x s)=x\)
tail \(\quad::[a] \rightarrow[a]\)
tail ( \(x: x s\) ) \(=x s\)
```

(head and tail are partial functions - both are undefined on the empty list.)

Defining Functions Over Lists by Structural Induction

length : [a \rightarrow Int	concat : $:\left[\right.$ [$\left.{ }^{\text {] }}\right] \rightarrow$ [a]	
length [] $=0$	concat [] $=$ []	
length ($x: x s$) $=1+$ length $x s$	concat ($x s: x s s$) $=x s+$ concat $x s s$	
(+) : : [a] \rightarrow [a$] \rightarrow$ [a]	sum [] $=0$	
[] $+y s=y s$	$\operatorname{sum}(x: x s)=x+\operatorname{sum} x s$	
	product [] $=1$ product ($x: x s$) $=x *$ product $x s$	
x 'elem' [] = False		
x 'elem' (y : ys)		
= $x \equiv y \\| x$ 'elem‘ $y s$		

(All these functions are in the standard prelude.)
\qquad

Exercise: Positional List Splitting

- take :: Int \rightarrow [a] \rightarrow [a]
take, applied to a $k::$ Int and a list $x s$, returns the longest prefix of $x s$ of elements that has no more than k elements.
- drop :: Int \rightarrow [a] \rightarrow [a]
drop k xs returns the suffix remaining after take k xs.

Laws:

- take k xs + drop k xs = xs
- length (take $k x s) \leq k$

Note: splitAt k xs $=($ take $k x s$, drop k xs $)$

Unfolding Definitions

A simple definition:
limit $=10^{\wedge} 2$
Expanding this definition:

$$
\begin{aligned}
& 4^{*}(\text { limit }+1) \\
& =4^{*}\left(\left(10^{\wedge} 2\right)+1\right)
\end{aligned}
$$

$$
=\ldots
$$

Another definition:
concat $=$ foldr (+) []
Expanding this definition:

```
concat [[1,2,3], [4,5]]
= (foldr (+) []) [[1,2,3],[4,5]]
```

= ...

SE3E03, 20062.147

Guarded Definitions

```
\(\operatorname{sign} x \mid x>0=1\)
\(\left\lvert\, \begin{aligned} & x==0=0 \\ & x<0=-1\end{aligned}\right.\)
choose :: Ord \(a \Rightarrow(a, b) \rightarrow(a, b) \rightarrow b\)
choose ( \(x, v\) ) ( \(y, w\) )
    \(x>y=v\)
    \(\mid x<y=w\)
    | otherwise = error "I cannot decide!"
```

If no guard succeeds, the next pattern is tried:

```
take 0 _ = []
take \(k_{\_} \mid k<0=\) error "take: negative argument"
take \(k\) [] \(=\) []
take \(k(x: x s)=x\) : take \((k-1) x s\)
take \(2[5,6,7]=\) take \(2(5: 6: 7:[])\)
\(=5:\) take \((2-1)(6: 7:[])\)
= \(5:\) take 1 (6:7: [])
= \(5: 6\) : take (1-1) (7: [])
= 5: 6: take \(0(7:[])\)
= \(5: 6\) : []
    \(=[5,6]\)
```

