- **functional** programs are function definitions; functions are **"first-class** citizens"
- **pure** (referentially transparent) "**no side-effects**"
- non-strict (lazy) arguments are evaluated only when needed
- statically strongly typed all type errors caught at compile-time
- type classes safe overloading
- Standardised language version: Haskell 98
- Several compilers and interpreters available
- Comprehensive web site: http://haskell.org/

Unfolding Definitions

Assume the following definitions to be in scope:

```
answer = 42
magic = 7
```

Expression evaluation will **unfold** (or **expand**) definitions:

```
Prelude> (answer - 1) * (magic * answer - 23)
11111
```

	(answer - 1) * (magic * answer - 23)	
=	(42 - 1) * (magic * 42 - 23)	(answer)
=	41 * (magic * 42 - 23)	(subtraction)
=	41 * (7 * 42 - 23)	(magic)
=	41 * (294 - 23)	(multiplication)
=	41 * 271	(subtraction)
=	11111	(multiplication)

SE3E03, 2006 1.27

Simple Expression Evaluation

The Haskell interpreters hugs, ghci, and hi accept any expression at their prompt and print (after the first ENTER) the value resulting from *evaluation* of that expression.

```
Prelude> 4*(5+6)-2
42
```

Expression evaluation proceeds by applying rules to subexpressions:

	4*(5+6)-2		[subtraction & mult. impossible]
=		(addition)	
	4*11-2		[subtraction impossible]
=		(multiplication)	
	44-2		
=		(subtraction)	
	42		

. ..,

How did I find those numbers?

Easy!

SE3E03 2006143

29

Prelude> [*n* | *n* <- [1.. 400], 11111 'mod' *n* == 0] [1,41,271]

This is a **list comprehension**:

- return all *n*
- where *n* is taken from then list [1.. 400]
- and a result is returned only if *n* divides 11111.

Expanding Function Definitions

```
perimeter r = 2 * r * pi
square :: Integer -> Integer
square x = x * x
```

perimeter :: Double -> Double

- perimeter (1 + 2)
 = 2 * (1 + 2) * pi
 = 2 * 3 * pi
 = 6 * pi
 = 18.84955592153876
 square (1 + 2)
 = (1 + 2) * (1 + 2)
 = 3 * 3
- = 9

SE3E03, 2006 1.56

Matching Function Definitions

fact :: Integer -> Integer
fact 0 = 1
fact n = n * fact (n-1)

fact 3 = 3 * fact (3-1)(fact n) = 3 * fact 2 (determining which fact rule matches) (fact n) = 3 * (2 * fact (2-1))(determining which fact rule matches) = 3 * (2 * fact 1)* (2 * (1 * fact (1-1))) (fact n) = 3 (determining which fact rule matches) = 3 * (2 * (1 * fact 0))* (2 * (1 * 1)) = 3 (fact 0) = 3 * (2 * 1) (multiplication) = 3 * 2 (multiplication) = 6 (multiplication)

Simple Expression Evaluation — Explanation

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function *f* to a number of arguments, the value of the argument at position *i* is always needed. then *f* is called **strict in its** *i***-th argument**
- Therefore: If *f* is strict in its *i*-th argument, then the *i*-th argument has to be evaluated whenever a result is needed from *f*.
- Simpler: A one-argument function *f* is strict iff *f* undefined = undefined.
 - Constant functions are non-strict: (const 5) undefined = 5
 - Checking a list for emptyness is **strict:** *null undefined* = *undefined*
 - List construction is non-strict: null (undefined : undefined) = False
 - Standard arithmetic operators are strict in both arguments:
 0 * undefined = undefined

SE3E03, 2006 1.78

SE3E03, 2006 1.72

Conditional Expressions

Prelude> if 11111 'mod' 41== 0 then 11111 'div' 41 else 5 271

The pattern is:

if condition then expression1 else expression2

- If the condition evaluates to **True**, the conditional expression evaluates to the value of *expression1*.
- If the condition evaluates to **False**, the conditional expression evaluates to the value of *expression2*.
- If the condition does not evaluate to anything, the conditional expression also does not evaluate to anything.

Therefore: "if _ then _ else _ " is strict in the condition.

In C: (condition ? expression1 : expression2)

Expanding Function Definitions

fact :: Integer ->	Integer
fact $n = if n == 0$	then 1 else $n * fact (n-1)$

```
fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
    * if 2 == 0 then 1 else 2 * fact (2-1)
= 3
    * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3
    * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
      2 * \text{ if } 1 == 0 \text{ then } 1 \text{ else } 1 * \text{ fact } (1-1)
      2 * if False then 1 else 1 * fact (1-1)
= 3
= 3
    * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
    * 2 * 1 * if 0 == 0 then 1 else 0 * fact (0-1)
= 3
    * 2 * 1 * if True then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * 1
= 3 * 2 * 1
= 3 * 2
= 6
```

List Construction

Display and enumeration lists are syntactic sugar: A list is

– either the empty list: [],

- or **non-empty**, and **cons**tructed from a **head** x and a **tail** xs (read: "xes")

x : xs — read: "x cons xes".

":" is used as *infix list constructor*:

3	:	[]		=		I	[3]
2	:	[3]		=		[2,	3]
1	:	[2,	3]	=	[1,	2,	3]

As an infix operator, ":" associates to the right:

$$x : y : ys = x : (y : ys)$$

Example:

SE3E03, 2006 1.120

100

1:2:[3,4] = 1:(2:[3,4]) = 1:[2,3,4] = [1,2,3,4]

SE3E03, 2006 1.100

Lists

• List display: between square brackets explicitly listing all elements, separated by commas:

[1,4,9,16,25]

• Enumeration lists: denoted by ellipsis ". . " inside square brackets; defined by beginning (and end, if applicable):

[1 .. 10] = [1,2,3,4,5,6,7,8,9,10] [1,3 .. 10] = [1,3,5,7,9] [1,3 .. 11] = [1,3,5,7,9,11] [11,9 .. 1] = [11,9,7,5,3,1] [11 .. 1] = [] [1 ..] = [1,2,3,4,5,6,7,8,9,10, ...] -- infinite list [1,3 ..] = [1,3,5,7,9,11, ...] -- infinite list

SE3E03, 2006 1.136

102

Cons is Not Associative

The convention that ":" *associates to the right* allows to save parentheses in certain cirtcumstances.

However, ":" is **not** associative:

- A list of integers: 1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]
- (1 : 2) : [3,4] is **nonsense**, since 2 is not a list!
- A list of lists of integers:
 [2] : [[3,4,5], [6,7]] = [[2],[3,4,5],[6,7]]
- Another list of lists of integers:
 (1 : [2]) : [[3,4,5], [6,7]] = [[1,2],[3,4,5],[6,7]]
- 1 : ([2] : [[3,4,5], [6,7]]) is **nonsense** again! Reason: 1 and [2] cannot be members of the same list (*type error*).

General shape:

Examples:

Note:

SE3E03 2006 L 146

147

The Type Language

Haskell has a full-fledged type language, with

- Simple predefined datatypes: Bool, Char, Integer, ...
- Predefined type constructors: lists, tuples, functions, ...
- Type synonyms
- User-defined datatypes and type constructors
- Type variables to express parametric polymorphism
- ...

SE3E03 2006 2 3

148

 $[n*n \mid n \leftarrow [1..10], even n] = [4,16,36,64,100]$

 $[n*n \mid n \leftarrow [1..5]] = [1,4,9,16,25]$

- The left generator "generates slower".

 Haskell code fragments will frequently be presented like above in a form that is more readable than plain typewriter text — in that case, the "comes from" arrow "<-" in generators turns into "←"

 $[m * n | m \leftarrow [1,3,5], n \leftarrow [2,4,6]] = [2,4,6,6,12,18,10,20,30]$

List Comprehensions

[term | generator {, generator_or_constraint }*]

Important Points	
Execution of Haskell programs is expression evaluation	Bo
Defining functions in Haskell is more like defining functions in mathematics than like defining procedures in C or classes and methods in Java	Ch Ir
One Haskell function may be defined by several "equations" — the first that matches is used.	Ir
Lists are an easy-to-use datastructure with lots of language and library support.	F] Do
For this reason, lists are heavily used especially in beginners' material.	Co

In many cases, advanced Haskell programmers will use other datastructures, for example *FiniteMaps* instead of association lists.

Simple Predefined Datatypes

Bool	truth values	False, True
Char	"Unicode" characters	(in GHC: ISO-10646)
Integer	integers	arbitrary precision
Int	"machine integers"	\geq 32 bits
Float	real floating point	single precision
Double	real floating point	double precision
Complex Float	complex floating point	single precision
Complex Double	complex floating point	double precision

183

Tuple Types

If t is a type, then the **list type** [t] is the type of **lists** with elements of type t.

List Types

```
answer :: Integer
```

answer = 42

```
limit :: Int
```

```
limit = 100
```

Then:

- [1, 2, 3, answer] :: [Integer]
- [1 .. limit] :: [Int]
- [[1 .. limit] , [2 .. limit]] :: [[Int]]
- ['h', 'e', 'l', 'l', 'o'] :: [Char]
- "hello" :: [Char]
- ["hello", "world"] :: [[Char]]
- [["first", "line"], ["second", "line"]] :: [[[Char]]]

If $n \neq 1$ is a natural number and t_1, \ldots, t_n are types, then the **tuple type** (t_1, \ldots, t_n) is the type of *n*-**tuples** with the *i*th component of type t_i .

Examples:

- (answer, 'c', limit) :: (Integer, Char, Int)
- (answer, 'c', limit, "all") :: (Integer, Char, Int, [Char])

• () :: ()

SE3E03 2006 2 36

— there is exactly one **zero-tuple**.

The type () of zero-tuples is also called the **unit type**.

SE3E03, 2006 2.34

Product Types (Pairs)

If t and u are types, then the **product type** (t, u) is the type of **pairs** with first component of type t and second component of type u (mathematically: $t \times u$).

Examples:

- (answer, limit) :: (Integer, Int)
- (limit, answer) :: (Int, Integer)
- ("???", answer) :: ([Char], Integer)
- ("???", (limit, answer)) :: ([Char], (Int, Integer))
- ("???", 'X') :: ([Char], Char)
- (limit, ("???", 'X')) :: (Int, ([Char], Char))
- (True, [("X",limit),("Y",5)]) :: (Bool, [([Char], Int)])

Simple Type Synonyms

If *t* is a type not containing any type variables, and *Name* is an identifier with a capital first letter, then

type *Name* = t

defines *Name* as a **type synonym** for *t*, i.e., *Name* can now be used interchangeably with *t*.

Examples:

type	String = [Char]		predefined
type	Point = (Double, Double)		(1.5, 2.7)
type	Triangle = (Point, Point, Point	こ)	
type	CharEntity = (Char, String)		('ü', "ü")
type	<pre>Dictionary = [(String,String)]</pre>		[("day","jour")]

[(a,b)]

types, e.g.:

(Bool, (a, Int))

[(String, [(key, val)])]

[(a,b)]

[(a,b)]

[(a,b)]

[(a,b)]

Function Types and Function Application

If t and u are types, then the **function type** $t \rightarrow u$ is the type of all **functions** accepting arguments of type t and producing results of type u (mathematically: $t \rightarrow u$).

Then:

- If a function f :: a -> b and an argument x :: a are given, then we have (f x) :: b.
- If a function f :: a -> b is given and we know that (f x) :: b, then the argument x is used at type a.
- If an argument x :: a is given and we know that (f x) :: b, then the function f is used at type a -> b.

SE3E03, 2006 2.38

Typing of List Construction

Type Variables and Polymorphic Types

• Type variables can be used like other types in the construction of types, e.g.:

• Identifiers with lower-case first letter can be used as type variables.

• A type containing at least one type variable is called **polymorphic**

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

• Polymorphic types can be instantiated by instantiating type variables with

[(Char,b)]

[(Char, Int)]

[(a,[(String,Int)])]

[(a,[(String,c)])]

- The empty list can be used at any list type: [] :: [a]
- If an element x :: a and a list xs :: [a] are given, then

```
(x : xs) :: [a]
```

Examples:

1 : ([2] : [[3,4,5], [6,7]])	cannot be typed!
[2] : [[3,4,5], [6,7]]	:: [[Int]]
[[3,4,5], [6,7]]	:: [[Int]]
[2] = 2 : []	:: [Int]
[]	:: [Int]
2	:: Int

SE3E03, 2006 2.48

187

Type Inference Examples

```
fst :: (a,b) -> a
fst (x,y) = x
fst ('c', False) :: Char
["hello", fst (x, 17)] \Rightarrow x :: String
f p = limit + fst p \Rightarrow p :: (Int,a)
f :: (Int,a) -> Int
g h = fst (h "") : [limit]
\Rightarrow h :: String -> (Int,a)
```

225

Let's Play the Evaluation Game Again — 1

```
hl :: String -> (Int, String)
hl str = (length str, ' ' : str)
```

g h = fst (h "") : [limit]

Then:

```
g h1
= fst (h1 "") : [limit]
= fst (length "", ' ' : "") : [limit]
= length "" : [limit]
= 0 : [limit]
= [0, 100]
```

Higher-Order Functions

g h = fst (h "") : [limit]

Functional Programming: Functions are first-class citizens

- Functions can be **arguments of other functions**: g h2
- Functions can be components of data structures: (7,h1), [h1, h2]
- Functions can be results of function application: succ . succ
- A first-order function accepts only non-functional values as arguments.

A higher-order function expects functions as arguments.

g is a second-order function: it expects first-order functions like h1, h2 as arguments.

SE3E03, 2006 2.63

Let's Play the Evaluation Game Again — 2

```
h2 :: String -> (Int, Char)
h2 str = (sum (map ord (notOccCaps str)), head str)
```

```
notOccCaps :: String -> String
notOccCaps str = filter ('notElem' str) ['A' .. 'Z']
```

```
g h = fst (h "") : [limit]
```

Then:

```
g h2
= fst (h2 "") : [limit]
= fst (sum (map ord (notOccCaps "")), head "") : [limit]
= sum (map ord (notOccCaps "")) : [limit]
= ...
= 2015 : [limit]
= [2015, 100]
```

SE3E03, 2006 2.76

212

map and filter

map :: (a -> b) -> ([a] -> [b])
map f [] = []
map f (x:xs) = f x : map f xs

filter :: (a -> Bool) -> ([a] -> [a])
filter p [] = []
filter p (x : xs) = if p x then x : rest else rest
where rest = filter p xs

These functions could also be defined via list comprehension:

map f xs = [f x | x <- xs]
filter p xs = [x | x <- xs, p x]</pre>

Examples:

map (7 *) [1 .. 6] = [7, 14, 21, 28, 35, 42]
filter even [1 .. 6] = [2, 4, 6]

Operator Sections

• Infix operators are turned into functions by surrounding them with parentheses:

$$(+) 2 3 = 2 + 3$$

• This is necessary in type declarations:

(+) :: Int -> Int -> Int -- not the "natural" type of (+)
(:) :: a -> [a] -> [a]
(++) :: [a] -> [a] -> [a]

• It is also possible to supply only one argument (which has to be an atomic expression):

Curried Functions

• Function application associates to the left, i.e.,

f x y = (f x) y

• Multi-argument functions in Haskell are typically defined as **curried** function, i.e., "they accept their arguments one at a time":

cylVol r h = (pi :: Double) * r * r * h

Since the right-hand side, r, and h obviously all have type Double, we have;

(cylVol r) :: Double -> Double
cylVol :: Double -> (Double -> Double)

• Function type construction associates to the right, i.e.,

```
a \rightarrow b \rightarrow c = a \rightarrow (b \rightarrow c)
```

SE3E03, 2006 2.79

Type Inf	erence Examples	"Partial Application"
fst :: (a,b) -> a		Let values with the following types be given:
fst(x,y) = x		$f::a \rightarrow b \rightarrow c$
fst ('c', False)	:: Char	x :: a y :: b
		The type of f is the function type $a \rightarrow (b \rightarrow c)$, with
["hello", fst (x, 17)]	\Rightarrow x :: String	• argument type <i>a</i> ,
f p = limit + fst p	\Rightarrow p :: (Int,a)	• result type $b \rightarrow c$.
	f :: (Int,a) ->	Int Therefore, we can apply f to x and obtain:
		$(f x) :: b \rightarrow c$
g h = fst (h "") : [limit \Rightarrow h :: String - g :: (String		The application of a "two-argument function" to a single argument is a "one-argument function", which can then be applied to a second argument:
g ·· (String -	-> (IIIC, a)) -> [IIIC]	(f x) y :: c = f x y

228

SE3E03 2006 2 93

 $g :: (String \rightarrow (Int, a)) \rightarrow [Int]$

 $k :: Int \rightarrow String \rightarrow (Int, String)$

= (3 * (length "" + 1)) : [limit]

g h = fst (h''') : [limit]

= fst (k 3''') : [limit]

= (3 * (0 + 1)) : [limit]

= (3 * 1) : [*limit*] = 3 : [*limit*] = [3, 100]

Turning Functions into Infix Operators

Surrounding a function name by **backquotes** turns it into an infix operator.

Frequently used examples (not the "natural" types throughout):

```
div, mod, max, min :: Int -> Int -> Int
elem :: Int -> [Int] -> Bool
```

12	'div'	7			=	1
12	`mod`	7			=	5
12	'max'	7			=	12
12	`min`	7			=	7
12	`elem`	[1	••	10]	=	False

SE3E03 2006 2 105

g(k3)

Operations on Functions

Partial Application — Example

k n str = (n * (length str + 1), unwords (replicate n str))

= fst (3 * (length "" + 1), unwords (replicate 3 "")) : [limit]

SE3E03, 2006 2.116

254

Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via **pattern matching**:

```
\begin{array}{ll} null & :: [a] \rightarrow Bool\\ null [] & = \mbox{True}\\ null (x : xs) = \mbox{False}\\ head & :: [a] \rightarrow a\\ head (x : xs) = x\\ tail & :: [a] \rightarrow [a]\\ tail (x : xs) = xs \end{array}
```

(head and tail are partial functions — both are undefined on the empty list.)

Exercise (*necessary!*): Copy only the definitions to a sheet of paper, and then infer the types yourself!

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via **structural induction**:

length $:: [a] \rightarrow Int$ concat :: $[[a]] \rightarrow [a]$ length [] = 0 concat [] = [] length(x:xs) = 1 + lengthxsconcat (xs : xss) = xs ++ concat xss (++) $:: [a] \rightarrow [a] \rightarrow [a]$ sum [] = 0 sum(x:xs) = x + sum xs++ ys = ys[] (x : xs) + ys = x : (xs + ys)product [] = 1 product (x : xs) = x * product xsx 'elem' [] = False x 'elem' (y : ys) $= x \equiv y \parallel x$ 'elem' ys

(All these functions are in the standard prelude.)

SE3E03, 2006 2.137

Exercise: Positional List Splitting

• take :: $Int \rightarrow [a] \rightarrow [a]$

take, applied to a k :: Int and a list xs, returns the longest prefix of xs of elements that has no more than k elements.

• drop :: $Int \rightarrow [a] \rightarrow [a]$

drop k xs returns the suffix remaining after take k xs.

Laws:

• take k xs + drop k xs = xs

• length (take k xs) $\leq k$

Note: splitAt k xs = (take k xs, drop k xs)

A simple definition: $limit = 10 \land 2$ Expanding this definition: 4 * (limit + 1) $= 4 * ((10 \land 2) + 1)$ = ...

Another definition: *concat* = *foldr* (+) [] Expanding this definition: *concat* [[1,2,3],[4,5]] = (*foldr* (+) []) [[1,2,3],[4,5]] = ...

SE3E03, 2006 2.147

Guarded Definitions

 $sign x \mid x > 0 = 1$ $\mid x == 0 = 0$ $\mid x < 0 = -1$ $choose :: Ord a \Rightarrow (a,b) \rightarrow (a,b) \rightarrow b$ choose (x,v) (y,w) $\mid x > y = v$ $\mid x < y = w$ $\mid otherwise = error "I cannot decide!"$

If no guard succeeds, the next pattern is tried:

take 0 = [] take k = | k < 0 = error "take: negative argument" take k [] = [] take k (x : xs) = x : take (k - 1) xs take 2 [5, 6, 7] = take 2 (5 : 6 : 7 : []) = 5 : take (2 - 1) (6 : 7 : []) = 5 : take 1 (6 : 7 : []) = 5 : 6 : take (1 - 1) (7 : []) = 5 : 6 : take 0 (7 : [])= 5 : 6 : [] = [5, 6]