
SE3E03, 2006 1.14 16

Haskell

• functional — programs are function definitions; functions are“first-class
citizens”

• pure (referentially transparent) —“no side-effects”

• non-strict (lazy) — arguments are evaluated only when needed

• statically strongly typed — all type errors caught at compile-time

• type classes— safe overloading

• Standardised language version:Haskell 98

• Several compilers and interpreters available

• Comprehensive web site:http://haskell.org/

SE3E03, 2006 1.27 29

Simple Expression Evaluation

The Haskell interpretershugs , ghci , andhi accept any expression at their
prompt and print (after the firstENTER) the value resulting fromevaluationof
that expression.

Prelude> 4*(5+6)-2

42

Expression evaluation proceeds by applying rules to subexpressions:

 4*(5+6)-2 [subtraction & mult. impossible]
= (addition)
 4*11-2 [subtraction impossible]
= (multiplication)
 44-2
= (subtraction)
 42

SE3E03, 2006 1.35 37

Unfolding Definitions

Assume the following definitions to be in scope:

answer = 42

magic = 7

Expression evaluation willunfold (or expand) definitions:

Prelude> (answer - 1) * (magic * answer - 23)
11111

 (answer - 1) * (magic * answer - 23)
= (42 - 1) * (magic * 42 - 23) (answer)
= 41 * (magic * 42 - 23) (subtraction)
= 41 * (7 * 42 - 23) (magic)
= 41 * (294 - 23) (multiplication)
= 41 * 271 (subtraction)
= 11111 (multiplication)

SE3E03, 2006 1.43 45

How did I find those numbers?

Easy!

Prelude> [n | n <- [1.. 400] , 11111 ‘mod‘ n == 0]
[1,41,271]

This is alist comprehension:

• return alln

• wheren is taken from then list[1 .. 400]

• and a result is returned only ifn divides11111.

SE3E03, 2006 1.44 46

Expanding Function Definitions

perimeter :: Double -> Double

perimeter r = 2 * r * pi

square :: Integer -> Integer

square x = x * x

 perimeter (1 + 2)

= 2 * (1 + 2) * pi

= 2 * 3 * pi

= 6 * pi

= 18.84955592153876

 square (1 + 2)

= (1 + 2) * (1 + 2)

= 3 * 3

= 9

SE3E03, 2006 1.56 58

Matching Function Definitions

fact :: Integer -> Integer

fact 0 = 1

fact n = n * fact (n-1)

 fact 3

= 3 * fact (3-1) (fact n)
= 3 * fact 2 (determining whichfact rule matches)
= 3 * (2 * fact (2-1)) (fact n)
= 3 * (2 * fact 1) (determining whichfact rule matches)
= 3 * (2 * (1 * fact (1-1))) (fact n)
= 3 * (2 * (1 * fact 0)) (determining whichfact rule matches)
= 3 * (2 * (1 * 1)) (fact 0)
= 3 * (2 * 1) (multiplication)
= 3 * 2 (multiplication)
= 6 (multiplication)

SE3E03, 2006 1.72 74

Simple Expression Evaluation — Explanation

• Arguments to a fuction or operation areevaluated only when needed.

• If for obtaining a result from an application of a functionf to a number of
arguments, the value of the argument at positioni is always needed. thenf is
calledstrict in its i-th argument

• Therefore: If f is strict in itsi-th argument, then thei-th argument has to be
evaluated whenever a result is needed fromf .

• Simpler: A one-argument functionf is strict iff f undefined = undefined.

– Constant functionsarenon-strict: (const 5) undefined = 5

– Checking a list for emptyness isstrict: null undefined = undefined

– List construction is non-strict: null (undefined : undefined) = False

– Standard arithmetic operators arestrict in both arguments:
0 ∗ undefined = undefined

SE3E03, 2006 1.78 80

Conditional Expressions

Prelude> if 11111 ‘mod‘ 41== 0 then 11111 ‘div‘ 41else 5
271

The pattern is:

if conditionthen expression1elseexpression2

– If the condition evaluates toTrue, the conditional expression evaluates to the
value ofexpression1.

– If the condition evaluates toFalse, the conditional expression evaluates to the
value ofexpression2.

– If the condition does not evaluate to anything, the conditional expression also
does not evaluate to anything.

Therefore: “if _ then _ else _ ” is strict in the condition.

In C: (condition? expression1: expression2)

SE3E03, 2006 1.98 100

Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

 fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1) -1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1) -1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1) -1)
= 3 * 2 * 1 * if 0 == 0 then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * if True then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * 1
= 3 * 2 * 1
= 3 * 2
= 6

SE3E03, 2006 1.100 102

Lists

• List display: between square brackets explicitly listing all elements, separated
by commas:

[1,4,9,16,25]

• Enumeration lists: denoted by ellipsis “.. ” inside square brackets; defined by
beginning (and end, if applicable):

[1 .. 10] = [1,2,3,4,5,6,7,8,9,10]

[1,3 .. 10] = [1,3,5,7,9]

[1,3 .. 11] = [1,3,5,7,9,11]

[11,9 .. 1] = [11,9,7,5,3,1]

[11 .. 1] = []

[1 ..] = [1,2,3,4,5,6,7,8,9,10, …] -- infinite list

[1,3 ..] = [1,3,5,7,9,11, …] -- infinite list

SE3E03, 2006 1.120 122

List Construction

Display and enumeration lists aresyntactic sugar: A list is

– either theempty list: [],

– ornon-empty, andconstructed from aheadx and atail xs (read: “xes”)

x : xs — read: “x consxes”.

“:” is used asinfix list constructor:
3 : [] = [3]

2 : [3] = [2, 3]

1 : [2, 3] = [1, 2, 3]

As an infix operator, “:”associates to the right:

x : y : ys = x : (y : ys)

Example:

1 : 2 : [3,4] = 1 : (2 : [3, 4]) = 1 : [2 , 3, 4] = [1, 2, 3, 4]

SE3E03, 2006 1.136 138

Cons is Not Associative

The convention that “:”associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” isnot associative:

• A list of integers:
1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]

• (1 : 2) : [3,4] is nonsense, since2 is not a list!

• A list of lists of integers:
[2] : [[3,4,5], [6,7]] = [[2],[3,4,5],[6,7]]

• Anotherlist of lists of integers:
(1 : [2]) : [[3,4,5], [6,7]] = [[1,2],[3,4,5],[6,7]]

• 1 : ([2] : [[3,4,5], [6,7]]) is nonsenseagain!
Reason:1 and[2] cannot be members of the same list (type error).

SE3E03, 2006 1.145 147

List Comprehensions

General shape:

[term| generator { , generator_or_constraint∗}]

Examples:

[n ∗ n | n ← [1 .. 5]] = [1,4 ,9 ,16 ,25]

[n ∗ n | n ← [1 .. 10] , even n] = [4 ,16 ,36 ,64 ,100]

[m ∗ n | m ← [1,3 ,5] , n ← [2 ,4 ,6]] = [2 ,4 ,6 ,6 ,12 ,18 ,10 ,20 ,30]

Note:

– The left generator “generates slower”.

– Haskell code fragments will frequently be presented like above in a form that
is more readable than plain typewriter text — in that case, the “comes from”
arrow “<- ” in generators turns into “←”

SE3E03, 2006 1.146 148

Important Points

• Execution of Haskell programsis expression evaluation

• Defining functions in Haskell is more like defining functions in mathematics
than like defining procedures in C or classes and methods in Java

• One Haskell function may be defined by several “equations” — the first that
matches is used.

• Lists are an easy-to-use datastructure with lots of language and library
support.

For this reason, lists are heavily used especially in beginners’material.

In many cases, advanced Haskell programmers will use other datastructures, for
exampleFiniteMaps instead of association lists.

SE3E03, 2006 2.2 151

The Type Language

Haskell has a full-fledgedtype language, with

• Simple predefined datatypes:Bool , Char , Integer , …

• Predefinedtype constructors: lists, tuples, functions, …

• Type synonyms

• User-defined datatypes and type constructors

• Type variables — to expressparametric polymorphism

• …

SE3E03, 2006 2.3 152

Simple Predefined Datatypes

Bool truth values False, True

Char “Unicode” characters (in GHC: ISO-10646)

Integer integers arbitrary precision

Int “machine integers” ≥ 32 bits

Float real floating point single precision

Double real floating point double precision

Complex Float complex floating point single precision

Complex Double complex floating point double precision

SE3E03, 2006 2.19 168

List Types

If t is a type, then thelist type [t] is the type oflists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [1, 2, 3, answer] :: [Integer]

• [1 .. limit] :: [Int]

• [[1 .. limit] , [2 .. limit]] :: [[Int]]

• [’h’, ’e’, ’l’, ’l’, ’o’] :: [Char]

• "hello" :: [Char]

• ["hello", "world"] :: [[Char]]

• [["first", "line"], ["second", "line"]] :: [[[Char]]]

SE3E03, 2006 2.34 183

Product Types (Pairs)

If t and u are types, then theproduct type (t, u) is the type of
pairs with first component of typet and second component of typeu
(mathematically:t×u).

Examples:

• (answer, limit) :: (Integer, Int)

• (limit, answer) :: (Int, Integer)

• ("???", answer) :: ([Char], Integer)

• ("???", (limit, answer)) :: ([Char], (Int, Integer))

• ("???", ’X’) :: ([Char], Char)

• (limit, ("???", ’X’)) :: (Int, ([Char], Char))

• (True, [("X",limit),("Y",5)]) :: (Bool, [([Char], Int)])

SE3E03, 2006 2.35 184

Tuple Types

If n−−/ 1 is a natural number andt1, … , tn are types, then thetuple type
(t1 , … , tn) is the type ofn-tupleswith theith component of type
ti.

Examples:

• (answer, ’c’, limit) :: (Integer, Char, Int)

• (answer, ’c’, limit, "all") :: (Integer, Char, Int, [Char])

• () :: ()

— there is exactly onezero-tuple.

The type() of zero-tuples is also called theunit type.

SE3E03, 2006 2.36 185

Simple Type Synonyms

If t is a type not containing any type variables, andNameis an identifier
with a capital first letter, then

type Name= t

definesNameas atype synonymfor t, i.e.,Namecan now be used
interchangeably witht.

Examples:

type String = [Char] − − predefined

type Point = (Double, Double) − − (1.5, 2.7)

type Triangle = (Point, Point, Point)

type CharEntity = (Char, String) − − (’Ã¼’, "ü")

type Dictionary = [(String,String)] − − [("day","jour")]

SE3E03, 2006 2.37 186

Type Variables and Polymorphic Types

• Identifiers with lower-case first letter can be used as type variables.

• Type variables can be used like other types in the construction of types, e.g.:

[(a,b)]

(Bool, (a, Int))

[(String, [(key, val)])]

• A type containing at least one type variable is calledpolymorphic

• Polymorphic types can be instantiated by instantiating type variables with
types, e.g.:

[(a,b)] ⇒ [(Char,b)]

[(a,b)] ⇒ [(Char,Int)]

[(a,b)] ⇒ [(a,[(String,Int)])]

[(a,b)] ⇒ [(a,[(String,c)])]

SE3E03, 2006 2.38 187

Typing of List Construction

• The empty list can be used at any list type:[] :: [a]

• If an elementx :: a and a list xs :: [a] are given, then

(x : xs) :: [a]

Examples:

2 :: Int

[] :: [Int]

[2] = 2 : [] :: [Int]

[[3,4,5], [6,7]] :: [[Int]]

[2] : [[3,4,5], [6,7]] :: [[Int]]

1 : ([2] : [[3,4,5], [6,7]]) − − cannot be typed!

SE3E03, 2006 2.39 188

Function Types and Function Application

If t and u are types, then thefunction type t-> u is the type of all
functions accepting arguments of typet and producing results of typeu
(mathematically:t → u).

Then:

• If a function f :: a -> b and an argumentx :: a are given, then we
have (f x) :: b .

• If a function f :: a -> b is given and we know that(f x) :: b , then
the argumentx is used at typea.

• If an argumentx :: a is given and we know that(f x) :: b , then the
functionf is used at typea -> b .

SE3E03, 2006 2.48 197

Type Inference Examples

fst :: (a,b) -> a

fst (x,y) = x

fst (’c’, False) :: Char

["hello", fst (x, 17)] ⇒ x :: String

f p = limit + fst p ⇒ p :: (Int,a)

f :: (Int,a) -> Int

g h = fst (h "") : [limit]

⇒ h :: String -> (Int,a)

SE3E03, 2006 2.55 204

Let’s Play the Evaluation Game Again — 1

h1 :: String -> (Int, String)

h1 str = (length str, ’ ’ : str)

g h = fst (h "") : [limit]

Then:

g h1

= fst (h1 "") : [limit]

= fst (length "", ’ ’ : "") : [limit]

= length "" : [limit]

= 0 : [limit]

= [0, 100]

SE3E03, 2006 2.63 212

Let’s Play the Evaluation Game Again — 2

h2 :: String -> (Int, Char)

h2 str = (sum (map ord (notOccCaps str)), head str)

notOccCaps :: String -> String

notOccCaps str = filter (‘notElem‘ str) [’A’ .. ’Z’]

g h = fst (h "") : [limit]

Then:

g h2

= fst (h2 "") : [limit]

= fst (sum (map ord (notOccCaps "")), head "") : [limit]

= sum (map ord (notOccCaps "")) : [limit]

= …

= 2015 : [limit]

= [2015, 100]

SE3E03, 2006 2.70 219

Higher-Order Functions

g h = fst (h "") : [limit]

Functional Programming: Functions are first-class citizens

• Functions can bearguments of other functions: g h2

• Functions can becomponents of data structures: (7,h1) , [h1, h2]

• Functions can beresults of function application: succ . succ

A first-order function accepts only non-functional values as arguments.

A higher-order function expects functions as arguments.

g is a second-order function: it expects first-order functions likeh1 , h2

as arguments.

SE3E03, 2006 2.76 225

mapand filter

map :: (a -> b) -> ([a] -> [b])

map f [] = []

map f (x:xs) = f x : map f xs

filter :: (a -> Bool) -> ([a] -> [a])

filter p [] = []

filter p (x : xs) = if p x then x : rest else rest

where rest = filter p xs

These functions could also be defined via list comprehension:

map f xs = [f x | x <- xs]

filter p xs = [x | x <- xs, p x]

Examples:

map (7 *) [1 .. 6] = [7, 14, 21, 28, 35, 42]

filter even [1 .. 6] = [2, 4, 6]

SE3E03, 2006 2.77 226

Operator Sections

• Infix operators are turned into functions by surrounding them with
parentheses:

(+) 2 3 = 2 + 3

• This is necessary in type declarations:

(+) :: Int -> Int -> Int − − not the “natural” type of(+)

(:) :: a -> [a] -> [a]

(++) :: [a] -> [a] -> [a]

• It is also possible to supply only one argument (which has to be an atomic
expression):

(2 +) 3 = 2 + 3 = (+ 3) 2

(8,3 /) 2.5 = 8.3 / 2.5 = (/ 2.5) 8.3

(7 :) [] = 7 : [] = (: []) 7

((2^17) :) (16:[]) = (2^17) : 16 : [] = (: (16:[])) (2^17)

SE3E03, 2006 2.79 228

Type Inference Examples

fst :: (a,b) -> a

fst (x,y) = x

fst (’c’, False) :: Char

["hello", fst (x, 17)] ⇒ x :: String

f p = limit + fst p ⇒ p :: (Int,a)

f :: (Int,a) -> Int

g h = fst (h "") : [limit]

⇒ h :: String -> (Int,a)

g :: (String -> (Int,a)) -> [Int]

SE3E03, 2006 2.86 235

Curried Functions

• Function application associates to the left, i.e.,

f x y = (f x) y

• Multi-argument functions in Haskell are typically defined ascurried function,
i.e., “they accept their arguments one at a time”:

cylVol r h = (pi :: Double) * r * r * h

Since the right-hand side,r , andh obviously all have typeDouble , we have;

(cylVol r) :: Double -> Double

cylVol :: Double -> (Double -> Double)

• Function type construction associates to the right, i.e.,

a -> b -> c = a -> (b -> c)

SE3E03, 2006 2.93 242

“Partial Application”

Let values with the following types be given:

f : : a → b → c

x : : a

y : : b

The type off is the function typea → (b → c), with

• argument typea,

• result type b → c.

Therefore, we can applyf to x and obtain:

(f x) : : b → c

The application of a “two-argument function” to a single argument is a
“one-argument function”, which can then be applied to a second argument:

(f x) y : : c = f x y

SE3E03, 2006 2.104 253

Partial Application — Example

g : : (String → (Int , a)) → [Int]
g h = fst (h "") : [limit]

k : : Int → String → (Int , String)
k n str = (n ∗ (length str + 1) , unwords (replicate n str))

g (k 3)
= fst (k 3 "") : [limit]
= fst (3 ∗ (length "" + 1) , unwords (replicate 3 "")) : [limit]
= (3 ∗ (length "" + 1)) : [limit]
= (3 ∗ (0 + 1)) : [limit]
= (3 ∗ 1) : [limit]
= 3 : [limit]
= [3 , 100]

SE3E03, 2006 2.105 254

Operations on Functions

id :: a -> a − − identity function
id x = x

(.) :: (b -> c) -> (a -> b) -> (a -> c) − − function composition
(f . g) x = f (g x)

flip :: (a -> b -> c) -> (b -> a -> c) − − argument swapping
flip f x y = f y x

curry :: ((a,b) -> c) -> (a -> b -> c) − − currying
curry g x y = g (x,y)

uncurry :: (a -> b -> c) -> ((a,b) -> c)
uncurry f (x,y) = f x y

Exercise (necessary!): Copy only the definitions to a sheet of paper, and then
infer the types yourself!

SE3E03, 2006 2.106 255

Turning Functions into Infix Operators

Surrounding a function name bybackquotesturns it into an infix operator.

Frequently used examples(not the “natural” types throughout):

div, mod, max, min :: Int -> Int -> Int

elem :: Int -> [Int] -> Bool

12 ‘div‘ 7 = 1

12 ‘mod‘ 7 = 5

12 ‘max‘ 7 = 12

12 ‘min‘ 7 = 7

12 ‘elem‘ [1 .. 10] = False

SE3E03, 2006 2.116 265

Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly viapattern
matching:

null : : [a] → Bool

null [] = True
null (x : xs) = False

head : : [a] → a

head (x : xs) = x

tail : : [a] → [a]
tail (x : xs) = xs

(head andtail arepartial functions — both are undefined on the empty list.)

SE3E03, 2006 2.130 279

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined viastructural
induction:

length : : [a] → Int

length [] = 0

length (x : xs) = 1 + length xs

(++) : : [a] → [a] → [a]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

x ‘elem‘ [] = False
x ‘elem‘ (y : ys)

= x ≡ y || x ‘elem‘ ys

concat : : [[a]] → [a]
concat [] = []
concat (xs : xss) = xs ++ concat xss

sum [] = 0

sum (x : xs) = x + sum xs

product [] = 1

product (x : xs) = x ∗ product xs

(All these functions are in the standard prelude.)

SE3E03, 2006 2.137 286

Exercise: Positional List Splitting

• take : : Int → [a] → [a]

take, applied to ak : : Int and a listxs, returns the longest prefix ofxs of
elements that has no more thank elements.

• drop : : Int → [a] → [a]

drop k xs returns the suffix remaining aftertake k xs.

Laws:

• take k xs ++ drop k xs = xs

• length (take k xs) ≤ k

Note: splitAt k xs = (take k xs , drop k xs)

SE3E03, 2006 2.144 293

Unfolding Definitions

A simple definition:

limit = 10 ^ 2

Expanding this definition:

4 * (limit + 1)
= 4 * ((10 ^ 2) + 1)
= …

Another definition:

concat = foldr (++) []

Expanding this definition:

concat [[1,2 ,3] , [4 ,5]]
= (foldr (++) []) [[1,2 ,3] , [4 ,5]]
= …

SE3E03, 2006 2.147 296

Guarded Definitions

sign x | x > 0 = 1
| x == 0 = 0
| x < 0 = -1

choose : : Ord a ⇒ (a ,b) → (a ,b) → b
choose (x ,v) (y ,w)

| x > y = v
| x < y = w
| otherwise = error "I cannot decide!"

If no guard succeeds, the next pattern is tried:
take 0 _ = []
take k _ | k < 0 = error "take: negative argument"
take k [] = []
take k (x : xs) = x : take (k − 1) xs

take 2 [5 , 6 , 7] = take 2 (5 : 6 : 7 : [])
= 5 : take (2 − 1) (6 : 7 : [])
= 5 : take 1 (6 : 7 : [])
= 5 : 6 : take (1 − 1) (7 : [])
= 5 : 6 : take 0 (7 : [])
= 5 : 6 : [] = [5 , 6]

