
SE3E03, 2006 1.28 30

Operational Semantics

• Useful for exploraration

• Useful to guideimplementation

• Useful to show correctness of implementation

• Derived assertions correspond toindividual test cases

• More general statements need to be shown at the meta-level

• Not useful to prove general propertiesof programs

– termination
– correctness

SE3E03, 2006 1.44 46

Correctness

• Correctness is always relative to a specification

• A specification is — in general — a logical formula

— many different logics are used!

• A program iscorrect iff it satisfiesits specification

• Using logical methods to prove correctness is calledformal verification

– Using (normally human-aided)syntacticmethods:proving

— normally necessary for functional requirements

– Using (exhaustive, automated)semanticmethods:model checking

— most useful for safety & lifeness properties (finite models)

• How do you show a specification is correct?

– Validation: Are we building the right product?

– Verification: Are we building the product right?

SE3E03, 2006 1.54 56

Axiomatic Semantics

Derivation of judgements written as “Hoare triples”

{P}S{Q}

whereP andQ are formulae denoting conditions onexecution states:
• P is theprecondition
• S is a program fragment (statement)
• Q is thepostcondition

A Hoare triple{P}S{Q} has two readings:

If Sstarts in a state satisfyingP,
then it terminatesand its terminating state satisfiesQ
— “S is totally correct with respect to P andQ”

Total correctness:

If Sstarts in a state satisfyingP andterminates,
then its terminating state satisfiesQ
— “S is partially correct with respect to P andQ”

Partial correctness:

(“terminates” means “terminates without run-time error”)

SE3E03, 2006 1.60 62

Axiomatic Semantics vs. Operational Semantics

• Operational semantics relatesstatesvia statements

• Axiomatic semantics relatesconditions on statesvia statements

Therefore:

• Operational semantics facilitates investigation of examples (“testing”)

• Axiomatic semantics facilitates relating a program with its specification
— verification

SE3E03, 2006 1.66 68

Relating Axiomatic and Operational Semantics

• Operational semantics relatesstatesvia statements

• Axiomatic semantics relatesconditions on statesvia statements

Relating states with conditions on states:

• “ s |−− P ” means “conditionP holds, or is valid, in states”

For example: •{x 7→ 5, y 7→ 7} |−− x > 0

• {x 7→ 5, y 7→ 7} |−−
10∑

i−−0
−− 55

• {x 7→ 5, y 7→ 7} |−−/ x > y

SE3E03, 2006 1.78 80

Relating Axiomatic and Operational Semantics

• Operational semantics relatesstatesvia statements

• Axiomatic semantics relatesconditions on statesvia statements

Relating states with conditions on states:
• “ s |−− P ” means “conditionP holds, or is valid, in states”

The two readings of a Hoare triple{P}S{Q}:

If Sstarts in a state satisfyingP andterminates,
then its terminating state satisfiesQ

I.e.: For all statesσ1 andσ2,
if σ1 |−− P and σ1(S) ⇒ σ2, thenσ2 |−− Q

Partial correctness:

If Sstarts in a state satisfyingP,
then it terminatesand its terminating state satisfiesQ

I.e.: For all statesσ1, if σ1 |−− P,
then there isa stateσ2
such that σ1(S) ⇒ σ2, andσ2 |−− Q

Total correctness:

SE3E03, 2006 1.86 88

Proving Partial and Total Correctness

Total correctnessof {P} S{Q}

is equivalent to

partial correctnessof {P} S{Q} together withthe fact thatS terminates when
started in a state satisfyingP

⇒ usually, separatetermination proof!

• For partial correctness, it is relatively easy to give adirect proof calculus

• Proving partial correctness therefore does not need operational semantics

• In the following, we will study and use this calculus

• (Termination proofs use different methods —well-orderedsets)

Unless explicitly mentioned, we read “{P} S{Q} ” as meaningpartial
correctness.

SE3E03, 2006 1.91 93

Derivation Rules for Sequencing, Conditionals, Loops

Logical consequence: P⇒ P′ {P′}S{Q′} Q′ ⇒ Q

{P}S{Q}

Sequence: {P}S1{R} {R}S2{Q}

{P}S1; S2{Q}

Conditional: {P ∧ b}S1{Q} {P ∧ ¬b}S2{Q}

{P}if b then S1 else S2 fi{Q}

while-Loop: {INV ∧ b}S{INV}

{INV}while b do S od{INV ∧ ¬b}

SE3E03, 2006 1.98 100

Axiom Schema for Assignments

{P[x \ e]}x :−− e{P}

Examples:

• {2−− 2}x :−− 2{x−− 2}

• {x + 1−− 2}x :−− x + 1{x−− 2}

• {n + 1−− 2}x :−− n + 1{x−− 2}

Typically,Hoare triples are derived starting from thepostcondition

— backward reasoning.

Considering this axiom schema as a way tocalculatea precondition from
assignment and postcondition, it calculates theweakest preconditionthat
completes a valid Hoare triple.

SE3E03, 2006 1.107 109

Example Verification

{True}k :−− 0; s :−− 0; while k−−/ n do k :−− k + 1; s :−− s + k od{s−−
n∑

i−−1
i}

⇐ {True}k :−− 0; s :−− 0; while k−−/ n do k :−− k + 1; s :−− s + k od{s−−
k∑

i−−1
i ∧ k−− n}

⇐ {True}k :−− 0; s :−− 0{s−−
k∑

i−−1
i}

∧ {s−−
k∑

i−−1
i}while k−−/ n do k :−− k + 1; s :−− s + k od{s−−

k∑

i−−1
i ∧ k−− n}

⇐ {True}k :−− 0{0−−
k∑

i−−1
i}

∧ {0−−
k∑

i−−1
i}s :−− 0{s−−

k∑

i−−1
i}

∧ {s−−
k∑

i−−1
i ∧ k−−/ n}k :−− k + 1; s :−− s + k{s−−

k∑

i−−1
i}

SE3E03, 2006 1.113 115

Example Verification (ctd.)

⇐ (True ⇒ 0−−
0∑

i−−1
i) ∧ {0−−

0∑

i−−1
i}k :−− 0{0−−

k∑

i−−1
i}

∧ True

∧ {s−−
k∑

i−−1
i ∧ k−−/ n}k :−− k + 1{s + k−−

k∑

i−−1
i}

∧ {s + k−−
k∑

i−−1
i}s :−− s + k{s−−

k∑

i−−1
i}

⇐ True

∧ s−−
k∑

i−−1
i ∧ k−−/ n⇒ s + k + 1−−

k+1∑

i−−1
i

∧ {s + k + 1−−
k+1∑

i−−1
i}k :−− k + 1{s + k−−

k∑

i−−1
i}

∧ True

⇐ True

SE3E03, 2006 1.126 128

Finding Proofs of Partial Correctness

• Normally,Backward reasoningdrives the proof:

Start to consider the postcondition and how the last statement achieves it

• Forward reasoningfrom the precondition can be useful for simple assignment
sequences and for exploration

• For while loops, the postcondition needs to consist of
– theinvariant of this loop, and

– the negation of theloop condition

Auxiliary variables used in a loop are usually involved in the invariant!

Given a loop “while b do S od” and a postconditionQ, use the consequence
rule to strengthenQ to Q′, such that

– Q′ ⇒ Q (strengthening)

– Q′ involves all auxiliary variables —generalisation!

– Q′ is of shapeINV ∧ ¬b

SE3E03, 2006 1.132 134

Simultaneous Assignments

{P[x1 \ e1, …, xn \ en]}(x1, …, xn) :−− (e1, …en){P}

Examples:

• {1−− 02 }(k, n) :−− (0, 1){n−− k2 }

• {y ≥ x + 2}(x, y) :−− (y, x){x ≥ y + 2}

Simultaneous assignments

– shorten code

– save auxiliary variables (for example for swapping)

– make proofs easier

– require simultaneous substitution

SE3E03, 2006 1.133 135

Example Problems (with Simultaneous Assignments)

{n ≥ 0} (y, a, b) :−− (0, 1, 1) ;
while y−−/ n do (y, a, b) :−− (y + 1, b, a + b) od {a−− fibn}

Given ann-element C-like arrays, prove partial correctness:

{True}

(i , a) :−− (0, 0) ;
while i −−/ n

 do if x−− s[i]

 then (i , a) :−− (i + 1, a + 1)

 fi od

{a−− #{j : IN | s[j]−− x ∧ 0 ≤ j < n} }

What does this program do?

SE3E03, 2006 1.136 138

Fibonacci

{n ≥ 0} (y, a, b) :−− (0, 1, 1) ;
while y−−/ n do (y, a, b) :−− (y + 1, b, a + b) od {a−− fibn}

⇐ 〈 (right consequence)〉

{n ≥ 0} P {a−− fiby ∧ b−− fiby+1∧ y−− n}

∧ (a−− fiby ∧ b−− fiby+1∧ y−− n⇒ a−− fibn)

⇐ 〈 (sequence , logic)〉

{n ≥ 0} (y, a, b) :−− (0, 1, 1) {a−− fiby ∧ b−− fiby+1} ∧

{a−− fiby ∧ b−− fiby+1}while y−−/ n do A od{a−− fiby ∧ b−− fiby+1∧ y−− n}

∧ True

SE3E03, 2006 1.139 141

Fibonacci (ctd.)

⇐ 〈 (left consequence ,while) 〉

(n ≥ 0⇒ 1−− fib0 ∧ 1−− fib0+1)

∧ {1−− fib0 ∧ 1−− fib0+1} (y, a, b) :−− (0, 1, 1) {a−− fiby ∧ b−− fiby+1}

∧ {a−− fiby ∧ b−− fiby+1∧ y−−/ n} (y, a, b) :−− (y + 1, b, a + b)

{a−− fiby ∧ b−− fiby+1}

⇐ 〈 (arithmetic , assignment , left consequence)〉
True ∧ True
∧ (a−− fiby ∧ b−− fiby+1∧ y−−/ n⇒ b−− fiby+1∧ a + b−− fib(y+1)+1)

∧ {b−− fiby+1∧ a + b−− fib(y+1)+1} (y, a, b) :−− (y + 1, b, a + b)

{a−− fiby ∧ b−− fiby+1}

⇐ 〈 (arithmetic , assignment)〉
True ∧ True

