
SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 2

Chapter 11

CPU Scheduling Policies

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 11.2 4

CPU Scheduling Policies

Read:

– Silberschatz: 6
– Tanenbaum: 2.5

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 11.8 10

CPU Scheduling

• Decidingwhich process to run

• (Decidingwhich thread to run)

• Decidinghow long the chosen process can run

• Important for systemthroughput

• Important for systemresponsiveness

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 11.10 12

CPU Scheduling Opportunities

CPU scheduling can occur after each of the following process
state transitions:

• (enter) → ready: new process is created

• running → ready: e.g., timer interrupt

• running → waiting: e.g., I/O request or wait interrupt

• running → (exit): process is terminated

• waiting → ready: e.g., I/O or process completion



SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 11.17 19

Kinds of CPU Scheduling

• Simple: Scheduling is only done after termination

– Process runs until its program is completed

• Cooperative or nonpreemptive: Scheduling is only done
after termination and after entering the waiting state

• Preemptive: Interrupts can be sent to processes for
implementing scheduling decisions

– A running process can be preempted by a process that
arrives at the ready queue

– Implemented by periodic clock interrupts

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 11.23 25

Scheduling Performance Measures

• CPU utilization: portion of time CPU is busy

• Throughput: number of processes completed per time
unit

• Turnaround time: average time a process takes to
complete

• Waiting time: average total time a process spends waiting
in the ready queue

• Response time: average time a process takes to respond

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 11.32 34

Round Robin (RR)

Standard time-sharing algorithm

• The ready queue is an ordered circle

• The next process in the ready queue is allocated to the CPU
for a fixed time periodT

– preempted if CPU burst is> T

• Advantages: Scheduling isfair

• Disadvantages:

– Waiting time may be long

– Performance is very sensitive to the size ofT

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 11.38 40

First Come, First Served (FCFS)

Simplenon-preemptive job scheduling policy

• The ready queue is implemented as a queue and its ordering
is used to schedule the processes in the queue

• Available forreal-time thread scheduling

• Advantage: Easy to implement

• Disadvantages:

– Waiting time is not minimal

– No attempt to balance I/O and CPU usages



SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 11.43 45

Shortest Job First (SJF)

“Prophetic” waiting-time minimization

• Process withshortest next CPU burst comes first —
preemptive or non-preemptive

• Advantages:

– Given the lengths of the next CPU bursts, easy to
implement

– Waiting time isprovably minimal

• Disadvantages:

– Difficult to predict the length of a CPU burst

– CPU-intensive processes may have to wait

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 11.49 51

Priority

• Processes are assigned priorities; the process with the
highest priority is dispatched first

• Priority assignment criteria:

– internal (computational requirements, e.g. SJF), or

– external (application requirements)

• Advantages: Easy to implement and flexible

• Disadvantages:

– Assigning priorities may be difficult

– Low-priority processes may starve

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 11.55 57

Multiple Queues

• There is one queue for each process category (such as the
category of system processes)

– Each queue has is own scheduling algorithm

• The queues are scheduled as units:

– Each queue may be assigned a priority

– Each queue is given a portion of CPU time

• Processes can be allowed to move between queues

• Advantage: Flexibility

• Disadvantage: Hard to implement

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 11.60 62

Multiprocessor Scheduling

• More complex than uniprocessor scheduling

– Processes must be scheduled effectively

– Processors must be kept busy

• Symmetric multiprocessing: Homogeneous processors
schedule themselves

– Data sharing safety is a major issue: Processes running
simultaneously on different processors may access and
modify common data structures

• Asymmetric multiprocessing: One processor handles all
system activities including processor scheduling and I/O
processing



SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 11.69 71

Real-Time Scheduling

• Reduce dispatch latency: preemptible system calls
– preemption points in long-running system calls
– preemptible kernel protecting all OS data structures with

synchronization mechanisms

• Priority inversion resolved via priority inheritance

• Hard Real-Time Scheduling: needs to completecritical
tasks withinguaranteed time
– resource reservation
– predictability of duration of actions needed
– usually: no virtual memory, no secondary storage
– special-purpose software running ondedicated hardware

• Soft Real-Time Scheduling: High priority e.g. for
multimedia applications or interactive graphics

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 11.78 80

Algorithm Evaluation Methods

• Analysis of mathematical models

– Deterministic modelling using fixed workloads

– Queuing theory (e.g.: Little’s formula:n = λ ⋅ W with av.
queue lengthn, arrival rateλ, and av. waiting timeW)

• Simulation

– Hard to get realistic workloads

• Implementation testing

– Extremely expensive for experiments

– Results may be platform dependent

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 11.82 84

CPU Scheduling Policy Examples

Section 6.7 of [Silberschatz-Galvin-Gagne-2002]:

• Solaris 2

– Hard real-time

• dispatch latency with preemption enabled: 2ms

• Windows 2000

– Priority boost for “foreground” process

• Linux

– Credit-based priority system

– Preemptible kernel still experimental

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 11.92 94

CPU Scheduling Policy Example: Solaris 2

Four scheduling classes: Real time, system, time sharing,
interactive

• Priority based. Priorities within classes are converted into
global priorities used for scheduling

• Real-time class has highest priority
– guaranteed response within a bounded period of time
– few real-time processes

• System class for kernel processes
– Examples: scheduler, paging daemon, …
– No time slicing
– ⇒ system processes run until blocked or preempted by

higher-priority processes



SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 11.97 99

Solaris 2 Time Sharing

Same scheduling policies fortime sharing andinteractive:

• Inverse relation between priorities and time slices:

The higher the priority, the shorter the time slice

• Interactive processes, in particular windowing applications,
typically have higher priority than CPU-bound processes

• ⇒ Good interactive response time, good CPU throughput


