
SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 2

Chapter 4

Files

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.1 3

File Systems

Read … :

BLP: Chapter 3
– Experiment!

USP: Chapters 4 and 5
– Experiment!

Background on File Systems in Operating Systems
– Silberschatz:11, 12

– Tanenbaum:6

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.9 11

File Concept

A file is a named collection of related information
that is recorded on secondary storage.

• smallest unit of secondary storage

• usually viewed as

– sequence of bits
– sequence of bytes
– sequence of characters
– sequence of lines
– sequence of records

• Meaning of stored information isdefined by creator.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.10 12

File Attributes

• Name
• Identifier
• Type

• Location
• Size
• Protection — in particular, ownership

• Access time, modification time

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.17 19

Disk Organization

• Oneboot control block per disk — information for booting
an OS from that disk.

• Severalpartitions:

– partition control block : partition size, block size, block
management data structures (free block count, free bolck
pointer, free FCB count, free FCB pointer)

– directory structure

– File Control Blocks (FCBs) — in UNIX: inode:

– Ownership, premission information

– Location of data blocks

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.26 28

inodesin Detail

– mode (permissions)

– number of hard links
– owner, group

– timestamps: modificationmtime, accessatime, change
ctime

– size (in bytes)

– number of blocks allocated
– Pointers to allocated blocks:

– 12 direct block pointers to the first data blocks of the file

– onesingle indirect pointer, points to a block containing
pointers to the next (blocksize / pointersize) data blocks

– onedouble indirect pointer

– onetriple indirect pointer

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.29 31

UNIX Permissions

“Condensed access control lists” with three user
classifications:

• Owner (u — user): usually creator, identified byuser ID

• Group (g): identified by agroup ID

• Universe(o — other): all other users in the system

Three kinds of access:

Files Directories
r read list
w write create and change entries
x execute traverse

Special permissions:setUID, setGID (s), and “sticky bit” (t).

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.31 33

Directories

• A directory is a file withcontents interpreted by the
operating system

• It contains a list ofentries:

– file name
– inode number

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.43 45

Links

“Hard” Links:
• Several directory entries point to the same inode
• By definition possible onlywithin a single file system
• “Remove”rm is reallyunlink: the directory entry is

deleted, and the inode’s link count decreased.
• Interactive creation: ln existing_file new_name
• Only the super-user can hard link directories

Symbolic Links
• Special type of file that contains only a file path (relative

or absolute)
• Target need not exist
• Can cross file system boundaries
• Interactive creation: ln -s existing_file new_name

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.44 46

ls -lai

759 drwxr-x--x 2 kahl users 4096 Mar 23 19:47 .
729 drwxrwxrwt 6 root root 4096 Mar 23 19:45 ..
145 -rw------- 1 kahl users 0 Mar 23 19:52 .hiddden
143 -rw-r--r-- 1 kahl users 17 Mar 23 19:47 README
144 lrwxrwxrwx 1 kahl users 6 Mar 23 19:50 info -> README
140 -rw-r-Sr-- 1 kahl users 35 Mar 23 19:44 lockable
141 -rwx--x--x 2 kahl users 13 Mar 23 19:46 program
142 -rwsr-x--- 1 kahl good 105 Mar 23 19:46 restricted
141 -rwx--x--x 2 kahl users 13 Mar 23 19:46 test

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.58 60

Copying Directories

• cp -R on Linux nowadays reproduces symbolic links

• cp -R does not recreate hard links!

• Portable solution:
tar cf - -C fromDir . | tar xf - -C toDir

• tar — originally for creatingtapearchives:
– one of:create, extract,table of contents
– “f file” from or to file (“-” for stdin/ctdout)
– “-C directory”: change directory (has to exist!)
– creation needs file arguments

• Producing packages:
tar czf package.tar.gz directory

– “z” for gzip; “j” for bzip2

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.64 66

File System Mounting

• Individual hard disks (or partitions) contain individual
file systems

• Many such file systems are integrated into a single
“file structure”

• In MS-DOS and MS-Windows:drive lettersas identifiers

• In UNIX: mounting of file systems onto existing (empty)
directories.

– /etc/fstab contains default mounting instructions for
the system

– mount -a mounts everything listed (withoutnoauto)
in /etc/fstab

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.72 74

UNIX File System Mounting Example

• /dev/hda5 contains/dir/file

• Running system contains (empty) directory/local/p5

• mount /dev/hda5 /local/p5

• Now available:/local/p5/dir/file

• umount /local/p5

• The original contents of directory/local/p5 is visible again

• umount fails if the mounted file system is in use, e.g., open
files, process working directory

Typical case:cd /media/cdrom in one window,
umount /media/cdrom in another window

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.78 80

Mounting Hints

• If /etc/fstab contains a line for mounting/dev/hda5 to
/local/p5, then the commandmount /local/p5 is sufficient —
typical application:mount /media/cdrom

• mount can be called directly, without a line in/etc/fstab

• Useful mounting options:ro, nosuid, noatime

• mount may need to be told the file system type:ufs, ext2,
ext3, jfs, xfs, reiserfs, proc, nfs, fat32, ntfs, smbfs, iso9660

• Since Linux 2.4.0 it is possible to remount part of the file
hierarchy somewhere else. The call is

mount --bind olddir newdir

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.80 82

File Operations

• Creation
• Writing

• Reading

• Repositioning

• Deleting

• Truncating

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.83 85

I/O System Calls

• open() creates a file descriptor associated with a file

• close() disassociates a file descriptor from its file

• read() performs input via a file descriptor

• write() preforms output via a file descriptor

• fcntl() can e.g. change flags of a file descriptor

• fsync() commits output to disk

• lseek() repositions the offset of a file descriptor

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.92 94

read(2)

ssize_t read(int fd , void *buf , size_t count);

read() attempts to read up tocount bytes from file descriptorfd
into the buffer starting atbuf .

If count is zero,read() returns zero and has no other results. If
count is greater thanSSIZE_MAX , the result is unspecified.

On success, the number of bytes read is returned (zero indicates
end of file), and the file position is advanced by this number. It
is not an error if this number is smaller than the number of bytes
requested; this may happen for example because fewer bytes
are actually available right now (maybe because we were close
to end-of-file, or because we are reading from a pipe, or from
a terminal), or becauseread() was interrupted by a signal. On
error, -1 is returned, anderrno is set appropriately. In this case it
is left unspecified whether the file position (if any) changes.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.93 95

Reading & Writing — Counterexample 1

(USP Example 4.5)

#define BLKSIZE 1024

char buf [BLKSIZE];

read(STDIN_FILENO, buf , BLKSIZE);

write(STDOUT_FILENO, buf , BLKSIZE);

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.94 96

USP Program 4.1: Reading Lines

int readline(int fd , char *buf , int nbytes) {
int numread = 0, returnval;

while (numread < nbytes − 1) {
returnval = read(fd , buf + numread , 1);
if ((returnval == −1) && (errno == EINTR)) continue;
if ((returnval == 0) && (numread == 0)) return 0;
if (returnval == 0) break;
if (returnval == −1) return −1;
numread++;
if (buf [numread−1] == ’\n’)
{ buf [numread] = ’\0’; return numread ; }

}
errno = EINVAL; return −1;

}

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.102 104

write(2)

ssize_t write(int fd , const void *buf , size_t count);

write() writes up tocount bytes to the file referenced by the file
descriptorfd from the buffer starting atbuf . POSIX requires
that aread() which can be proved to occur after awrite() has
returned returns the new data. Note that not all file systems are
POSIX conforming.

— This is the“UNIX file system semantics”!

On success, the number of bytes written are returned (zero
indicates nothing was written). On error, -1 is returned,
and errno is set appropriately. Ifcount is zero and the file
descriptor refers to a regular file, 0 will be returned without
causing any other effect. For a special file, the results are
not portable.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.103 105

Reading & Writing — Counterexample 2

(USP Exmp. 4.6)

#define BLKSIZE 1024
char buf [BLKSIZE];
ssize_t bytesread;

bytesread = read(STDIN_FILENO, buf , BLKSIZE);
if (bytesread > 0)

write(STDOUT_FILENO, buf , bytesread);

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.104 106

Copying — USP Program 4.2

int copyfile(int fromfd , int tofd) {
char *bp, buf [BLKSIZE]; int bytesread, byteswritten, totalbytes=0;
for (; ;) {

while (((bytesread = read(fromfd , buf , BLKSIZE)) == −1) &&
(errno == EINTR)) ; /* handle interruption by signal */

if (bytesread ≤ 0) break; /* real error or EOF on fromfd */
bp = buf ;
while (bytesread > 0) {

while(((byteswritten = write(tofd , bp, bytesread)) == −1) &&
(errno == EINTR)) ; /* handle interruption by signal */

if (byteswritten ≤ 0) break; /* real error on tofd */
totalbytes += byteswritten; bytesread −= byteswritten;
bp += byteswritten;

}
if (byteswritten == −1) break; /* real error on tofd */

}
return totalbytes; } /* end of copyfile() */

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.111 113

Opening Files

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open(const char *pathname, int flags);

int open(const char *pathname, int flags, mode_t mode);

Flagsare constructed using bitwise-or from e.g.:

– exactly oneof O_RDONLY , O_WRONLY , or O_RDWR

– O_CREAT — If the file does not exist it will be created
– O_TRUNC — Truncate existing file if opened for writing

– O_APPEND — Eachwrite will append at end

– O_SYNC — Eachwrite will block until data is on disk
– O_ASYNC — Generate signal when I/O becomes possible

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.113 115

File Access Permissions

Themodeis constructed using bitwise-or from:
• S_IRUSR — userhasread permission
• S_IWUSR — userhaswrite permission
• S_IXUSR — userhasexecutepermission
• S_IRGRP — group hasread permission
• S_IWGRP — group haswrite permission
• S_IXGRP — group hasexecutepermission
• S_IROTH — othershaveread permission
• S_IWOTH — othershavewrite permission
• S_IXOTH — othershaveexecutepermission
Abbreviations:
• S_IRWXU — user has read, write and execute permission
• S_IRWXG — group has read, write and execute perm.
• S_IRWXO — others have read, write and execute perm.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.118 120

File Handles

A file handle is a logical name for referring to a particular file
or device for I/O:

– file descriptor: int (for system calls)

– file pointer (stream):FILE * (library type)

File descriptorsare indices into the file descriptor table
of process.

File pointers point to a library data structureFILE containing

– A file descriptor

– A buffer (array of bytes)

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.126 128

Buffered I/O

Writing:
• data is written into the buffer
• when buffer full, or upon requestfflush(), the buffer is

flushedto its destination
• stdout is buffered,stderr is unbuffered
• If data is not in the file / on the screen after a program crash,

this doesnot mean that the program never wrote the data!

Reading:
• When data is requested while buffer is empty, data is read

from destination (file or e.g.stdin)

• While buffer is non-empty, read requests are satisfied from
the buffer.

• (this makes type-ahead possible)

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.127 129

BLP page 116 —copy_stdio.c

#include <stdio.h>

int main()
{

int c;
FILE *in, *out ;

in = fopen("file.in","r");
out = fopen("file.out","w");

while((c = fgetc(in)) ≠ EOF)
fputc(c,out);

exit(0);
}

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.130 132

Directory Interaction

Library functions:

• DIR *opendir (const char *name);

• int closedir (DIR *dir);

• struct dirent *readdir (DIR *dir); — try man readdir!

• off_t telldir (DIR *dir);

• void seekdir (DIR *dir , off_t offset);

• void rewinddir(DIR *dir);

• int scandir (const char *dir , struct dirent ***namelist,

int(*filter)(const struct dirent *),

int(*compar)(const struct dirent **, const struct dirent **));

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.131 133

BLP page 122 —printdir .c

#include <unistd .h>
#include <stdio.h>
#include <dirent.h>
#include <string.h>
#include <sys/stat.h>

void printdir (char *dir , int depth)
{

DIR *dp;
struct dirent *entry ;
struct stat statbuf ;

if((dp = opendir (dir)) == NULL)
{ fprintf (stderr ,"cannot open directory: %s\n", dir); return; }

chdir (dir);

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.132 134

BLP page 122 —printdir .c (ctd.)

while((entry = readdir (dp)) ≠ NULL) {
lstat(entry→d_name,&statbuf);
if(S_ISDIR(statbuf .st_mode)) {

// Found a directory, but ignore . and ..
if(strcmp(".",entry→d_name) == 0 ||

strcmp("..",entry→d_name) == 0)
continue;

printf ("%*s%s/\n",depth,"",entry→d_name);
printdir (entry→d_name,depth+4); // Recurse at a new

indent level
}
else printf ("%*s%s\n",depth,"",entry→d_name);

}
chdir (".."); closedir (dp);

}

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.140 142

System-Wide Open-File Table

Keeping track ofall files currently open forany process.
Entry contents:process-independentinformation:

– Location of file of disk
– Location of cached file information
– Open count

– current position(in UNIX)

For each process, the OS keeps aFile Descriptor Table.
Entry contents:

– Index (pointer) into system-wide open-file table

Process-specificinformation:
– (current position — in some systems)
– access rights, “close-on-exec flag”

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.153 155

File Tables in UNIX

In-memory Inode Table
• For each open filea single copyof its file control blocks
• Acts ascachefor file control blocks

System File Table
• one entry per activeopen
• contains reference to in-memory inode
• current position, access rights, access mode

File Descriptor Table
• one per process — copied byfork
• contains reference to system file table entry
• In user space, references to file descriptors areint indexes

into this table.
• file locks — not copied byfork

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.159 161

Redirection — dup2 — Duplicate a File Descriptor

int dup(int oldfd);
int dup2(int oldfd , int newfd);

dup anddup2 create a copy of the file descriptoroldfd.

After successful return ofdup or dup2, the old and new
descriptors may be used interchangeably.

This is used to implementI/O redirection in shells:
• Input redirection: “stdin comes fromsomefile”:
somecommand < somefile

• Output redirection: “stdout goes tosomefile”:
somecommand > somefile

• Direct FD redirection: “stderr goes tosomefile, too”:
somecommand > somefile 2&>1

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.160 162

Redirection — USP Program 4.18

#include <fcntl.h> <stdio.h> <sys/stat.h> <unistd .h> "restart.h"
#define FLAGS (O_WRONLY | O_CREAT | O_APPEND)
#define MODE (S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)

int main(void) {
int fd = open("my.file", FLAGS, MODE);
if (fd == −1) { perror ("Failed to open my.file"); return 1; }
if (dup2(fd , STDOUT_FILENO) == −1) {

perror ("Failed to redirect standard output"); return 1; }
if (r_close(fd) == −1) {

perror ("Failed to close the file"); return 1; }
if (write(STDOUT_FILENO, "OK", 2) == −1) {

perror ("Failed in writing to file"); return 1; }
return 0;

}

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.167 169

Temporary Files

• char * tmpnam(char * s)
produces a file name thatmight be used for temporary files
but creates asecurity risk!

Usemkstemp or tmpfile instead!

• int mkstemp(char *template)
creates andopens a new temporary file.

• FILE *tmpfile(void)
creates andfopens a new temporary file, which will be
deleted when closed.

• char *mkdtemp(char *template)
creates a new temporary directory.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.175 177

Read

BLP Chapter 4: The Linux Environment

• int getopt(int argc, char * const argv [], const char *opts);

• Environment Variables —getenv, putenv

• Time — UNIX internally uses UTC (GMT)

• User information

• Host information —uname -a

• Logging —void syslog(int priority , const char *format, ...);

• Resource limits

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.183 185

BLP Chapter 5: Terminals

• Canonical mode: terminal passes only complete lines to
application.

• int isatty(int fd) checks whetherfd is connected to a terminal

• struct termios

• stty -a

• terminfo capabilities

• Virtual Consoles: Crtl-Alt-Fk switches to console numberk

Console 7: First X server (if running),DISPLAY :0

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.190 192

BLP Chapter 6: curses

• Arbitrary cursor movement and screen updates.

• #include <curses.h>

• Link with -lcurses

• Coordinates (0,0) are in left upper corner — as often

• “Windows” — devide terminal screen into rectangular
areas

• New CD Collection Application

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.192 194

Read BLP Section 7.1: Memory Management

• Linux implements a demand paged virtual memory system

• (We will get back to memory management later)

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 4.198 200

BLP

• BLP Section 7.2: File Locking: Postponed

• BLP Section 7.3:dbm indexed file storage system

• BLP Chapter 8:mysql

— look at this for your database course

— consider alsopostgresql

