
SE2S03, 2006 — WOLFRAM KAHL, Computing and Software, McMaster University 1.13 16

What is Programming?

Wikipedia:

Computer programming (often simply programming or coding) is the craft of
writing a set of commands or instructions that can later be compiled and/or
interpreted and then inherently transformed to an executable that an electronic
machine can execute or “run”. Programming requires mainly logic, but has
elements of science, mathematics, engineering, and — many would argue
— art.

In software engineering, programming (implementation) is regarded as one
phase in a software development process.

• logic: programs are unambiguous

• science:programs reflect theories about the real world

• mathematics:programs can be complex —abstraction!

• engineering:systematic approach necessary

• art/craft: programs should be well-written forhuman readers

SE2S03, 2006 — WOLFRAM KAHL, Computing and Software, McMaster University 1.27 30

Historical Development of Programming Languages

Emphasis has changed:

– from making life easier for thecomputer

– to making life easier for theprogrammer.

Easier for the programmer means:

– Use languages that facilitate writingerror-free programs

– Use languages that facilitate writing programs that areeasy to maintain

Goal of language development:

– Developers concentrate ondesign(or even justspecification)

– Programming is trivial or handled by computer

(executable specification languages, rapid prototyping)

SE2S03, 2006 — WOLFRAM KAHL, Computing and Software, McMaster University 1.34 37

What Kinds of Programming Languages are There?

Imperative — “telling the machine what todo”

Declarative— “telling the machine what toachieve”

Programming Languages

Imperative

C, Pascal
FORTRAN
COBOL
Modula-2

Object-oriented

C++, Oberon-2
Java,Smalltalk

Declarative

Functional

Haskell, OCaml
ML, Scheme, LISP

Logic

Prolog
Mercury

SE2S03, 2006 — WOLFRAM KAHL, Computing and Software, McMaster University 1.45 48

SE 2S03, Principles of Programming: Calendar Description

Fundamental concepts of imperative programming languages;
(Assertion, Assignment, Control flow, Iteration, recursion,
exceptions); Data representations; Basic concepts of operating
systems; Composing and analyzing small programs.

• “Fundamental concepts”:the execution model of imperative programming

• “…operating systems”: the execution environment of your programs

• “…Assignment,Control flow,…”:standard imperative program constructs

• “Data representations”:

how to implement and use application-specific data structures

• “Composing and analyzing small programs”:

systematic and principled approach to software development

SE2S03, 2006 — WOLFRAM KAHL, Computing and Software, McMaster University 1.52 55

Goals

• producing good-quality imperative programs inC

• firm understanding of the execution model

• coding-level software engineering practices

• common programming patterns and data structures

• solvingprogrammingproblems

SE2S03, 2006 — WOLFRAM KAHL, Computing and Software, McMaster University 1.66 69

Language Learning

• Syntax:Rules of Grammar

— how to write correct sentences/programs

• Semantics:Meaning of Grammar

— how to understand sentences/programs

• Vocabulary: Words and their meanings

— standard library

• Pragmatics

— how people use the language

• Practice, practice, practice

SE2S03, 2006 — WOLFRAM KAHL, Computing and Software, McMaster University 1.72 75

Skills

• Programming is askill

• Problem solvingis askill

• Debuggingis askill

• …

Acquiring skills is not a spectator sport.

SE2S03, 2006 — WOLFRAM KAHL, Computing and Software, McMaster University 1.80 83

Pair Programming

• Collaborative learning

• Two persons work together on one computer

• “Designateddriver ” at keyboard, actively creating code

• “Reviewer” constantly watching, identifying deficiencies

• Switch rolesafter designated period of time!

• Joint ownership of every single character in result

• Studies show improved quality of code and learning

SE2S03, 2006 — WOLFRAM KAHL, Computing and Software, McMaster University 1.81 84

Teaching Assistants

• Salvador Garcia Martinez

• Jinrong Han

• Scott West

• Shiqi (Steve) Cao

SE2S03, 2006 — WOLFRAM KAHL, Computing and Software, McMaster University 1.88 91

SE 2S03 — Exercises and Tutorials

• Weeklyexercise sheets

• Some exercise questions will be similar to exam questions

• Completethe exercisesbefore the tutorial!!!

• Tutorials are intended fordiscussion of student solutions

• Practice is essentialfor acquiringskills!

• Three days before an exam istoo late for acquiring skills!

SE2S03, 2006 — WOLFRAM KAHL, Computing and Software, McMaster University 1.95 98

Grading

Surprise Quiz +2%

Midterm 1 10%/ 20%

Midterm 2 10%/ 20%

Midterm 3 10%/ 20%

Final 40%– 70%

midterm_weight[i] = (midterm[i] < final) ? 10 : 20

SE2S03, 2006 — WOLFRAM KAHL, Computing and Software, McMaster University 1.97 100

Quiz 2005, Simulation of Program Execution

What is the output ot the following C program:

#include <stdio.h> // Q2005_1.c
void main(void) {

int n = 22;
int k = 0, d = 1, s = 1;
while (s ≤ n) {

d = d + 2;
s = s + d ;
k = k + 1;
printf ("k = %d\t d = %d\t s = %d\n", k , d , s);

}
printf ("The result is %d.\n", k);

}

Can you state a general mathematical relation betweenk , d, ands that holds at
eachprintf call inside the loop?

SE2S03, 2006 — WOLFRAM KAHL, Computing and Software, McMaster University 1.103 106

Quiz 2005, Program Execution with Assertions

#include <stdio.h> // Q2005_1_assert.c
#include <assert.h> // See Textbook 13.10
int square(int k) { return k * k ; }
void main(void) {

int n = 22;
int k = 0, d = 1, s = 1;
while (s ≤ n) { // Loop invariant:

assert(d == 2 * k + 1 && s == square(k + 1));
d = d + 2;

assert(d == 2 * (k + 1) + 1 && s == square(k + 1));
s = s + d ;

assert(d == 2 * (k + 1) + 1 && s == square(k + 2));
k = k + 1;

assert(d == 2 * k + 1 && s == square(k + 1));
printf ("k = %d\t d = %d\t s = %d\n", k , d , s);

} assert(s > n && s == square(k + 1));
printf ("The result is %d.\n", k);

}

SE2S03, 2006 — WOLFRAM KAHL, Computing and Software, McMaster University 1.120 123

Assertions

• From The Free On-line Dictionary of Computing:

assertion: An expression which, if false, indicates anerror. Assertions are
used fordebuggingby catchingcan’t happenerrors.

can’t happen: The traditional program comment for code executed under a
condition that should never be true […] Although “can’t happen” events are
genuinely infrequent in production code, programmers wise enough to check
for them habitually are often surprised at how frequently they are triggered
during development and how many headaches checking for them turns out to
head off.

• #include <assert.h>
• void assert(scalar expression);

• if the macroNDEBUG was defined when<assert.h> was last included,assert()
generates no code

• if expression evaluates to false,assert(expression) prints an error message and
terminates the program

• for debugging, not intended for users!

SE2S03, 2006 — WOLFRAM KAHL, Computing and Software, McMaster University 1.135 138

Quiz 2005, Testing for Sortedness

Designand implement a C functionis_sorted that, for a fixed positive integerN,
and an integer array of sizeN tests whether the elements of that array are in strictly
ascending order.

Document all your assumptions and decisions!

• “testing whether” — return typebool most appropriate
• N is assumed to be defined outside our function

#include <stdbool.h> // sorted.c
bool is_sorted(int array []) {

assert(N > 0); // non-empty array
int i ;
for (i = 0; i < N − 1; i++) {
if (array [i] ≥ array [i+1]) return false;

}
return true;

}

SE2S03, 2006 — WOLFRAM KAHL, Computing and Software, McMaster University 1.142 145

Read: Textbook Chapter 1

• Computer Organization

• Machine Languages, Programming Languages

• Programming Language Translation

• C Standard Library

In analogy with natural languages:

– Grammar: Syntax and semantics rules of the programming language C

– Vocabulary: C standard library functions

SE2S03, 2006 — WOLFRAM KAHL, Computing and Software, McMaster University 1.149 152

How Does a Computer Work?

Keyboard Screen Printer

Peripheral Bus System Network

CPU Memory System

von Neumann
Bottleneck

SE2S03, 2006 — WOLFRAM KAHL, Computing and Software, McMaster University 1.161 164

How Does a Computer Run Your Program?

• You editmyprogram.c

• You compile: cc -o myprogram myprogram.c

– Preprocessorgeneratespreprocessed source(myprogram.i)

– Compiler proper generatesassembly program(myprogram.s)

– Assemblergeneratesobject code(myprogram.o)

– Linker generatesexecutable(myprogram)

– You “run” it: ./myprogram

– Operating systemgenerates a new process

– Dynamic linker resolves references to shared libraries

– Loader generatesexecutable in-memory image

– CPU runs machine code

